ЗУДБИНОВ Ю.И.

«АЗБУКА ЭКГ»

2006

 

ВСТУПЛЕНИЕ

Каждый из нас умеет читать. Читая текст, мы не задумываемся, из каких элементов состоят буквы «А» или «Б». Мы воспринимаем их как само собой разумеющееся. Однако в детстве, обучаясь чтению, мы внимательно рассматривали составляющие элементы каждой буквы, нарисованной в азбуке.

Каждый врач должен уметь читать электрокардиограмму. Читать как текст, не задумываясь, из каких элементов состоит тот или иной зубец ЭКГ. А научиться распознавать и автоматически анализировать эти зубцы ему должна помочь азбука, аналогичная той, по которой он в детстве учил буквы. Только название этой азбуки будет соответственное - АЗБУКА ЭКГ.

Так возникла идея написать эту книгу, которая бы коротко, в доступной форме, объясняла практическим врачам азы электрокардиографической диагностики.

В предлагаемом пособии собраны компилятивные данные различных руководств по ЭКГ и обобщен 10-летний опыт ее преподавания выпускникам медицинского института. Некоторые моменты изложения могут быть спорными, но автор не претендует на истину в последней инстанции. Цель АЗБУКИ — научить всех желающих «читать» ЭКГ.

 

 

ГЛАВА 1

ГЕНЕЗ ОСНОВНЫХ ЗУБЦОВ, ИНТЕРВАЛОВ И СЕГМЕНТОВ ЭКГ

Слово «электрокардиограмма» дословно переводится так: ЭЛЕКТРО — электрические потенциалы, КАРДИО — сердце, ГРАММА — запись.

Следовательно, электрокардиограмма — это запись электрических потенциалов (электроимпульсов) сердца.

 

1.1. СИНУСОВЫЙ УЗЕЛ

Сердце работает (возбуждается) под действием электрических импульсов, которые генерирует собственный водитель ритма.

Анатомически этот водитель ритма сердца расположен в правом предсердии, в месте слияния полых вен, в синусовом узле, поэтому импульс возбуждения, исходящий из него, называется, соответственно, синусовым импульсом.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

У здорового человека синусовый узел вырабатывает электрические импульсы с частотой 60—90 в минуту, равномерно посылая их по проводящей системе сердца. Следуя по ней, эти импульсы охватывают возбуждением прилегающие к проводящим путям отделы миокарда и регистрируются графически на ленте как кривая линия ЭКГ.

Иными словами, электрокардиограмма — это графическое отображение (регистрация) прохождения электрического импульса по проводящей системе сердца.

Прохождение импульса по проводящей системе сердца графически записывается по вертикали в виде пиков — подъемов и спадов кривой линии. Эти пики принято называть зубцами электрокардиограммы и обозначать латинскими буквами Р, Q, R, S и Т.

Помимо регистрации по вертикали зубцов, по горизонтали на ЭКГ записывается время, в течение которого импульс проходит по определенным отделам сердца.- Отрезок на электрокардиограмме, измеренный по своей продолжительности во времени (в секундах), называют интервалом.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.2. ЗУБЕЦ Р

Электрический потенциал, выйдя за пределы синусового узла, охватывает возбуждением прежде всего правое предсердие, в котором находится синусовый узел. Так на ЭКГ записывается пик возбуждения правого предсердия.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Далее, электроимпульс по проводящей системе предсердий, а именно по межпредсердному пучку Бахмана, переходит на левое предсердие и возбуждает его. Этот процесс отображается на ЭКГ пиком возбуждения левого предсердия. Его возбуждение начинается в то время, когда правое предсердие уже охвачено возбуждением, что хорошо видно на рисунке 4.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Отображая возбуждения обоих предсердий, правого и левого, электрокардиографический аппарат суммирует оба пика возбуждения и записывает графически на кардиограмме (ленте) зубец Р.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Таким образом, зубец Р представляет собой суммарное отображение прохождения синусового импульса по проводящей системе предсердий с поочередным возбуждение сначала правого (восходящее колено зубца Р), а затем левого (нисходящее колено зубца Р) предсердий.

 

1.3. ИНТЕРВАЛ Р—Q

Одновременно с возбуждением предсердий импульс, выходящий из синусового узла, направляется по нижней веточке пучка Бахмана к атриовентрикулярному (предсердно-желудочковому) соединению. В нем происходит физиологическая задержка импульса (замедление скорости его проведения). Проходя по атриовентрикулярному соедине­нию, электрический импульс не вызывает возбуждения прилежащих слоев, поэтому на электрокардиограмме пики возбуждения не записываются. Регистрирующий электрод вычерчивает при этом прямую линию, называемую изоэлектрической линией.

Оценить прохождение импульса по атриовентрикулярному соединению можно во времени (за сколько секунд импульс проходит это соединение). Таков генез интервала P-Q.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.4. ЗУБЦЫ Q, R И S

Продолжая свой путь по проводящей системе сердца, электрический импульс достигает проводящих путей желудочков, представленных системой пучка Гиса и волокнами Пуркинье. Проходя по этой системе, электроимпульс возбуждает миокард желудочков.

Этот процесс отображается на электрокардиограмме формированием (записью) желудочкового комплекса QRS.

Следует отметить, что желудочки сердца возбуждаются в определенной последовательности.

Сначала, в течение 0,03с возбуждается межжелудочко­вая перегородка. Процесс ее возбуждения приводит к формированию на кривой ЭКГ зубца Q.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Затем возбуждается верхушка сердца и прилегающие к ней области. Так на ЭКГ появляется зубец R. Время возбуждения верхушки в среднем равно 0,05с.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

И в последнюю очередь возбуждается основание сердца. Следствием этого процесса является регистрация на ЭКГ зубца S. Продолжительность возбуждения основания серд­ца составляет около 0,02с.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Таким образом, вышеназванные зубцы Q, R и S формируют единый желудочковый комплекс QRS, общей продолжительностью 0,10с.

 

1.5. ИНТЕРВАЛ S—Т И ЗУБЕЦ Т

Охватив возбуждением желудочки, импульс, начавший путь из синусового узла, угасает, потому что клетки миокарда не могут долго оставаться возбужденными. В них начинаются процессы восстановления своего первоначального состояния, бывшего до возбуждения.

Процессы угасания возбуждения и восстановление исходного состояния миокардиоцитов также регистрируются на ЭКГ.

Электрофизиологическая сущность этих процессов очень сложна, здесь большое значение имеет быстрое вхождение ионов хлора в возбужденную клетку, согласованная работа калий-натриевого насоса, имеют место фаза быстрого угасания возбуждения и фаза медленного угасания возбуждения и др. Все сложные механизмы этого процесса объединяют обычно одним понятием — процессы реполяризации. Для нас же самое главное то, что процессы реполяризации отображаются графически на ЭКГ отрезком S—Т и зубцом Т.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.6. ВЕЛИЧИНЫ И ПРОДОЛЖИТЕЛЬНОСТЬ ЗУБЦОВ И ИНТЕРВАЛОВ

Для запоминания величины (высоты или глубины) основных зубцов необходимо знать: все аппараты, регистрирующие ЭКГ, настроены таким образом,

что вычерчиваемый в начале записи контрольный сигнал равен по высоте 10мм или 1милливольту (mV).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Традиционно все измерения зубцов и интервалов принято производить во втором стандартном отведении, обозначаемом римской цифрой II.

В этом отведении высота зубца R в норме должна быть равна 10мм или 1mV.

Высота зубца Т и глубина зубца S должны соответствовать 1/2—1/3 высоты зубца R или 0,5—0,3mV.

Высота зубца Р и глубина зубца Q будут равны 1/4 от высоты зубца R или 0,3—0,2mV.

В электрокардиографии ширину зубцов (по горизонтали) принято измерять не в миллиметрах, а в секундах, например, ширина зубца Р равняется 0,10с. Эта особенность возможна потому, что запись ЭКГ производят при постоянной скорости протяжки ленты. Так, при скорости лентопротяжного механизма 50мм/с каждый миллиметр будет равен 0,02с.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Для удобства характеристики продолжительности зубцов и интервалов запомните время, равное 0,10±0,02с. При дальнейшем изучении ЭКГ мы будем часто обращаться к этому значению времени.

Какова, например, ширина зубца Р, т.е. за какое время синусовый импульс охватит возбуждением оба предсердия? Ответ: 0,10±0,02с.

Какова продолжительность интервала Р—Q, т.е. за какое время синусовый импульс пройдет атриовентрикулярное соединение? Ответ: 0,10±0,2с.

Какова ширина желудочкового комплекса QRS, т.е. за какое время синусовый импульс охватит возбуждением желудочки? Ответ: 0,10±0,02 с.

Сколько времени потребуется синусовому импульсу для возбуждения предсердий и желудочков (учитывая при этом, что в норме к желудочкам он может попасть только через атриовентрикулярное соединение)? Ответ: 0,30±0,02с. (т.е. 0,10 трижды).

Действительно, это время продолжительности возбуждения всех отделов сердца от одного синусового импульса. Эмпирически определено, что время реполяризации и время возбуждения всех отделов сердца приблизительно равны.

Следовательно, продолжительность фазы реполяризации также равна приблизительно 0,30±0,02с.

 

ИТОГИ ГЛАВЫ 1

1. Импульс возбуждения образуется в синусовом узле.

2. Продвигаясь по проводящей системе предсердий, сину­совый импульс поочередно возбуждает их. Поочередное возбуждение правого и левого предсердий графи­чески на ЭКГ отображается записью зубца Р.

3. Следуя по атриовентрикулярному соединению, синусо­вый импульс претерпевает физиологическую задержку своего проведения, возбуждения прилежащих слоев не производит. На ЭКГ регистрируется прямая линия, которая называется изоэлектрической линией (изолинией). Отрезок этой линии между концом зубца Р и началом зубца Q называется интервалом Р—Q.

4. Проходя по проводящей системе желудочков (пучок Гиса, правая и левая ножки пучка, волокна Пуркинье), синусовый импульс возбуждает межжелудочковую пе­регородку, верхушку и основание сердца. Процесс их возбуждения отображается на ЭКГ регистрацией желудочкового комплекса QRS.

5. Вслед за процессами возбуждения в миокарде начина­ются процессы реполяризации (восстановления исход­ного состояния миокардиоцитов). Графическое отображение процессов реполяризации приводит к формированию на ЭКГ интервала S—Т и зубца Т.

6. Высоту зубцов на электрокардиографической ленте измеряют по вертикали и выражают в милливольтах.

7. Ширину зубцов и продолжительность интервалов измеряют на ленте по горизонтали и выражают в секундах.

 

ДОПОЛНИТЕЛЬНАЯ ИНФОРМАЦИЯ К ГЛАВЕ 1

1. СВЕДЕНИЯ О СЕГМЕНТЕ

Сегментом в электрокардиографии принято считать отрезок кривой ЭКГ по отношению его к изоэлектрической линии. Например, сегмент S—Т находится выше изоэлектрической линии или сегмент S—Т располагается ниже изолинии.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. ПОНЯТИЕ ВРЕМЕНИ ВНУТРЕННЕГО ОТКЛОНЕНИЯ

Проводящая система сердца, о которой речь шла выше, заложена под эндокардом, и для того чтобы охватить возбуждением мышцу сердца, импульс как бы «пронизывает» толщу всего миокарда в направлении от эндокарда к эпикарду.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Для охвата возбуждением всей толщи миокарда требуется определенное время, в течение которого импульс проходит от эндокарда к эпикарду. Это время называется временем внутреннего отклонения и обозначается большой латинской буквой J.

Определить время внутреннего отклонения на ЭКГ достаточно просто: для этого необходимо опустить перпендикуляр от вершины зубца R до пересечения его с изоэлектрической линией. Отрезок от начала зубца Q до точки пересечения этого перпендикуляра с изоэлектрической линией и есть время внутреннего отклонения.

Время внутреннего отклонения измеряется в секундах и равно 0,02—0,05с.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. ИНФОРМАЦИЯ О ВЕКТОРЕ ВОЗБУЖДЕНИЯ

Посмотрите внимательно на рисунок 15. Возбуждение толщи миокарда имеет конкретную направленность — от эндокарда к эпикарду. Это и есть векторная величина, т. е. вектору, помимо своего значения, присуща еще и направленность. Этим вектор и отличается от скалярных величин. Сравните: площадь прямоугольника равна 30см2 — это скалярная величина. Напротив, расстояние от пункта «А» до пункта «Б», равное 100м, это векторная величина, поскольку имеется явная направленность от «А» до «Б».

Несколько векторов могут суммироваться (по правилам векторного сложения) и результатом этой суммы будет являться один суммарный (результирующий) вектор (рис. 17).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Например, если сложить все три вектора возбуждения желудочков (вектор межжелудочковой перегородки, вектор верхушки и вектор основания сердца), то мы получим суммарный (он же итоговый, он же результирующий) вектор возбуждения желудочков (рис. 18).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. ПОНЯТИЕ «РЕГИСТРИРУЮЩИЙ ЭЛЕКТРОД»

Регистрирующим электродом принято называть элек­трод, соединяющий записывающее устройство (электрокардиограф) с поверхностью тела пациента. Электрокардиограф, получая электрические импульсы с поверхности тела пациента через этот регистрирующий электрод, преобразует их в графическую кривую линию на миллиметровой ленте. Эта кривая линия и есть элект­рокардиограмма.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. ГРАФИЧЕСКОЕ ОТОБРАЖЕНИЕ ВЕКТОРА НА ЭКГ

Отображение (регистрация) вектора или нескольких векторов на электрокардиографической ленте происходит с определенными закономерностями, приводимыми ниже.

1. Больший по своей величине вектор отображается на ЭКГ большей амплитудой зубца по сравнению с вектором меньшей величины.

 

 

 

 

 

 

 

 

 

 

 

2. Если вектор направлен на регистрирующий электрод, то на электрокардиограмме записывается зубец, направленный вверх от изолинии.

 

 

 

 

 

 

 

 

 

3. Если вектор направлен от регистрирующего электрода, то на электрокардиограмме записывается зубец, направленный вниз от изолинии.

 

 

 

 

 

 

 

 

 

 

Обобщим понятие графического отображения векторов. Предположим, что один и тот же вектор «А» записывается двумя противоположно лежащими регистрирующими электродами: правым и левым.

 

 

 

 

 

 

 

 

 

На рисунке 23 видно, что правый регистрирующий электрод графически отобразит вектор «А» на электрокардиограмме зубцом, направленным вверх (зубец R). Напротив, тот же самый вектор «А» левым регистрирующим электро­дом отобразится на электрокардиограмме зубцом, направленным вниз (зубец S).

Иными словами, один и тот же вектор записывается на ЭКГ регистрирующими электродами, имеющими различное местоположение, по-разному, в данном случае дискордантно, т.е. разно направленно.

Приведенные данные о графическом отображении вектора на электрокардиограмме очень помогут нам в освоении следующих глав.

 

 

ГЛАВА 2

ЭЛЕКТРОКАРДИОГРАФИЧЕСКИЕ ОТВЕДЕНИЯ

2.1. ЭЛЕКТРИЧЕСКОЕ ПОЛЕ СЕРДЦА

Тот из нас, кто наблюдал процесс записи ЭКГ у пациента, невольно задавался вопросом: почему, для регистрации электрических потенциалов сердца, электроды накладывают на конечности — руки и ноги?

Как вы уже знаете, сердце (конкретно — синусовый узел) вырабатывает электрический импульс, который имеет вокруг себя электрическое поле. Это электрическое поле распространяется по нашему телу концентрическими окружностями.

Кисти рук и стопы ног как раз и находятся на одной концентрической окружности, что дает возможность, накладывая на них электроды, регистрировать импульсы сердца, т.е. электрокардиограмму.

 

2.2. ЭЛЕКТРОКАРДИОГРАФИЧЕСКОЕ ОТВЕДЕНИЕ

Регистрировать ЭКГ можно и с поверхности грудной клетки, т.е. с другой окружности электрического поля сердца. Можно записать ЭКГ и непосредственно с поверхности сердца (часто это делают при операциях на открытом сердце), и от различных отделов проводящей системы сердца, например от пучка Гиса (в этом случае записывается гисограмма) и т.д.

Иными словами, графически записать кривую линию ЭКГ можно, присоединяя регистрирующие электроды к различным участкам тела. В каждом конкретном случае расположения записывающих электродов мы будем иметь электрокардиограмму, записанную в определенном отведении, т.е. электрические потенциалы сердца как бы отводятся от определенных участков тела.

Таким образом, электрокардиографическим отведением называется конкретная система (схема) расположения регистрирующих электродов на теле пациента для записи ЭКГ.

 

2.3. СТАНДАРТНЫЕ ОТВЕДЕНИЯ

Как указывалось выше, каждая точка в электрическом поле имеет свой собственный потенциал. Сопоставляя потенциалы двух точек электрического поля, мы определяем и записываем разность этих потенциалов.

Записывая разность потенциалов между двумя точками — правой руки и левой руки, один из основоположников электрокардиографии Эйнтховен (Einthoven, 1903) предложил такую позицию двух регистрирующих электродов назвать первой стандартной позицией (или первым отведением), обозначая ее римской цифрой I.

Разность потенциалов, определенная между правой рукой и левой ногой, получила название второй стандартной позиции регистрирующих электродов (или второго отведения), обозначается римской цифрой II.

При позиции регистрирующих электродов на левой руке и левой ноге ЭКГ записывается в третьем (III) стандартном отведении.

Если мысленно соединить между собою места наложения регистрирующих электродов на конечностях, мы получим треугольник, названный в честь Эйнтховена.

Как вы убедились, для записи ЭКГ в стандартных отведениях используют три регистрирующих электрода, накладываемых на конечности. Чтобы не перепутать их при наложении на руки и ноги, электроды окрашиваются разными цветами.

Электрод красного цвета прикрепляется к правой руке. Электрод желтого цвета прикрепляется к левой руке. Зеленый электрод фиксируется на левой ноге. Четвертый электрод, черный, является заземлением пациента и накладывается на правую ногу.

Обратите внимание: при записи электрокардиограммы в стандартных отведениях регистрируется разность потенциалов между двумя точками электрического поля. Поэтому стандартные отведения называют еще и двухполюсными, в отличие от однополюсных (униполярных) отведений.

 

2.4. ОДНОПОЛЮСНЫЕ ОТВЕДЕНИЯ

При однополюсном отведении регистрирующий электрод, обозначаемый латинской буквой V, определяет разность потенциалов между конкретной точкой электрического поля (к которой он подведен) и гипотетическим элек­трическим нулем (заземлением).

Устанавливая регистрирующий однополюсный электрод V в позицию на правую (Right) руку, записывают электрокардиограмму в отведении VR.

При позиции регистрирующего униполярного электро­да на левой (Left) руке ЭКГ записывается в отведении VL.

Зарегистрированную электрокардиограмму при позиции электрода на левой ноге (Foot) обозначают как отведение VF.

Однополюсные отведения от конечностей отображаются графически на ЭКГ маленькими по высоте зубцами вследствие небольшой разности потенциалов. Поэтому для удобства расшифровки их приходится усиливать.

Усиленный — по-английски «augmented», первая буква «а». Добавляя ее к обозначению каждого из рассмотренных однополюсных отведений, получаем их полное название — усиленные однополюсные отведения от конечностей aVR, aVL и aVF. В их названии каждая буква имеет смысловое значение:

а — усиленный от «augmented»;

V — однополюсный регистрирующий электрод;

R — месторасположение электрода на правой руке Right;

L — месторасположение электрода на левой руке Left;

F — месторасположение электрода на ноге Foot.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.5. ГРУДНЫЕ ОТВЕДЕНИЯ

Помимо стандартных и однополюсных отведений от конечностей, в электрокардиографической практике применяются еще и грудные отведения.

При записи ЭКГ в грудных отведениях регистрирующий однополюсный электрод прикрепляется непосредственно к грудной клетке. Электрическое поле сердца здесь наиболее сильное, поэтому нет необходимости усиливать грудные униполярные отведения. Но не это главное.

Главное в том, что грудные отведения, как отмечалось выше, регистрируют электрические потенциалы с другой окружности электрического поля сердца. Так, для записи электрокардиограммы в стандартных и однополюсных отведениях потенциалы регистрировались с окружности электрического поля сердца, расположенной во фронтальной плоскости (электроды накладывались на руки и на ноги). При записи ЭКГ в грудных отведениях электрические потенциалы регистрируются с окружности электрического поля сердца, которая располагается на горизонтальной плоскости.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Места прикрепления регистрирующего электрода на поверхности грудной клетки строго оговорены. Так, при позиции регистрирующего электрода в 4-м межреберье у правого края грудины ЭКГ записывается в первом грудном отведении, обозначаемом как V1.

Ниже приводится схема расположения электрода и получаемые при этом электрокардиографические отведения:

 V1 в 4-м межреберье у правого края грудины,

 V2 в 4-м межреберье у левого края грудины,

 V3 на середине расстояния между V2 и V4,

 V4 в 5-м межреберье на срединно-ключичной линии,

 V5 на пересечении горизонтального уровня 5-го межреберья и передней подмышечной линии,

 V6 на пересечении горизонтального уровня 5-го межреберья и средней подмышечной линии,

 V7 на пересечении горизонтального уровня 5-го межреберья и задней подмышечной линии,

 V8 на пересечении горизонтального уровня 5-го межреберья и срединно-лопаточной линии

 V9 на пересечении горизонтального уровня 5-го межреберья и паравертебральной линии.

Отведения V7, V8 и V9 не нашли своего широкого применения в клинической практике и почти не используются.

Первые же шесть грудных отведений V1—V6 наряду с тремя стандартными I, II, III и тремя усиленными однополюсными aVR, aVL, aVF составляют 12 общепринятых отведений.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ИТОГИ ГЛАВЫ 2

1. Электрокардиографическим отведением называется конкретная схема наложения регистрирующих электродов на поверхность тела пациента для записи ЭКГ.

2. Электрокардиографических отведений много. Наличие множества отведений обусловлено необходимостью записывать потенциалы различных участков сердца.

3. Позиция регистрирующего электрода на поверхности тела пациента для записи ЭКГ в конкретном отведении строго оговорена и соотнесена с анатомическими образованиями.

 

ДОПОЛНИТЕЛЬНАЯ ИНФОРМАЦИЯ К ГЛАВЕ 2

1. ДРУГИЕ ОТВЕДЕНИЯ

Помимо общепринятых 12 отведений существует еще несколько модификаций записи ЭКГ в отведениях, предложенных различными авторами. Так, в практике часто применяют отведения, предложенные Клетеном (отведения по Клетену), Небом (отведения по Небу). В исследовательских целях часто используют электрографическое картирование сердца, когда ЭКГ регистрируют в 42 отведениях от грудной клетки. Нередко приходится записывать ЭКГ в грудных отведениях на одно или два межреберья выше от обычного местоположения электрода. Существуют внутрипищеводные отведения, когда регистрирующий электрод находится внутри пищевода (внутриполостные отведения), и множество других отведений.

 

2. ОТДЕЛЫ СЕРДЦА, ОТОБРАЖАЕМЫЕ ОТВЕДЕНИЯМИ

Наличие столь большого количества отведений обусловлено тем, что каждое конкретное отведение регистрирует особенности прохождения синусового импульса по определенным отделам сердца.

Установлено, что I стандартное отведение регистрирует особенности прохождения синусового импульса по передней стенке сердца, III стандартное отведение отображает потенциалы задней стенки сердца, II стандартное отведение представляет собой как бы сумму I и III отведений. Далее см. схематическую таблицу.

 

Отведения

Отделы миокарда, отображаемые отведением

I

передняя стенка сердца

II

суммарное отображение I и III

III

задняя стенка сердца

aVR

правая боковая стенка сердца

aVL

левая переднебоковая стенка сердца

aVF

задненижняя стенка сердца

V1 и V2

правый желудочек

V3

межжелудочковая перегородка

V4

верхушка сердца

V5

переднебоковая стенка левого желудочка

V6

боковая стенка левого желудочка

 

Таким образом, если на электрокардиографической ленте будут зарегистрированы отклонения от нормы в отведении V3, можно думать, что патология имеет место в межжелудочковой перегородке. Следовательно, большое разнообразие электрокардиографических отведений позволяет нам с большей степенью достоверности осуществлять топическую диагностику процесса, происходящего в том или ином участке сердца.

 

3. СПЕЦИФИКА ГРУДНЫХ ОТВЕДЕНИЙ

Ранее было отмечено, что грудные отведения записывают потенциалы сердца с иной окружности электрического поля сердца, нежели стандартные и усиленные однополюсные отведения. Указывалось конкретно, что грудные отведения отображают изменение результирующего вектора возбуждения сердца не во фронтальной, а в горизонтальной плоскости.

Следовательно, генез основных зубцов кривой электрокардиограммы в грудных отведениях будет несколько отличаться от данных, усвоенных нами для стандартных отведений. Эти незначительные отличия заключаются в следующем:

1. Результирующий вектор возбуждения желудочков, направленный на регистрирующий электрод V6 (анатомически расположен над областью левого желудочка), будет отображаться в этом отведении зубцом R. В то же время данный результирующий вектор в отведении V1 (анатомически расположен над областью правого желудочка) отобразится зубцом S (рис. 27). Сравните с рисунком 23.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Поэтому принято считать, что в отведении V6 зубец R свидетельствует о возбуждении левого (своего) желудочка, а зубец S правого (противоположного) желудочка. В отведении V1 — обратная картина: зубец R — возбуждение правого желудочка, зубец S — левого.

Сравните: в стандартных отведениях зубец R отобра­жал возбуждение верхушки сердца, а зубец S — основания сердца.

2. Вторая специфическая особенность грудных отведений заключается в том, что в отведениях V1 V2, анатомически близко расположенных к предсердиям, потенциалы последних регистрируются лучше, чем в стандартных отведениях. Поэтому в отведениях V1 и V2 зубец Р, отображающий возбуждение предсердий, записывается лучше всего.

3. Есть понятие «правые» и «левые» отведения. В электрокардиографии понятие этих отведений используют для установления признаков гипертрофии желудочков, подразумевая, что левые отведения преимущественно отображают потенциалы левого желудочка, правые — правого. К левым отведениям относят I, aVL, V5 и V6 отведения. Правыми отведениями считают отведения III, aVF, V1 и V2.

При сопоставлении этих отведений с данными схематической таблицы, приводимой выше, возникает вопрос: почему I и aVL отведения, отражающие потенциалы передней и левой переднебоковой стенки сердца, относят к отведениям левого желудочка? Принято считать, что при нормальном анатомическом положении сердца в грудной клетке, передняя и левая переднебоковая стенки сердца представлены преимущественно левым желудочком, тогда как задняя и задненижняя стенки сердца — правым.

Однако, когда сердце отклоняется от своего нормального анатомического положения в грудной клетке (астеническое и гиперстеническое телосложение, гипертрофия желудочков, заболевания легких и др.), передняя и задняя стенки могут быть представлены другими отделами сердца. Это необходимо учитывать для точной топической диагностики патологических процессов, происходящих в том или ином отделе сердца.

Помимо топической диагностики патологического процесса в различных отделах миокарда, электрокардиографические отведения позволяют проследить отклонение электрической оси сердца и определить его электрическую позицию. Об этих понятиях мы и поговорим ниже.

 

 

ГЛАВА 3

ЭЛЕКТРИЧЕСКАЯ ОСЬ И ЭЛЕКТРИЧЕСКАЯ ПОЗИЦИЯ СЕРДЦА

3.1. РЕЗУЛЬТИРУЮЩИЙ ВЕКТОР

Результирующий вектор возбуждения желудочков представляет собой суммарный вектор возбуждения: межжелудочковой перегородки, верхушки и основания сердца. Он имеет определенную направленность в трехмерном пространстве — во фронтальной, горизонтальной и сагиттальной плоскостях. В каждой из них результирующий вектор имеет свою проекцию, но более всего нас интересует его проекция во фронтальной плоскости.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2. ЭЛЕКТРИЧЕСКАЯ ОСЬ СЕРДЦА

Электрической осью сердца называется проекция результирующего вектора возбуждения желудочков во фронтальной плоскости.

Электрическая ось сердца может отклоняться от своего нормального положения либо влево, либо вправо.

Точное отклонение электрической оси сердца определяют по углу альфа α.

 

3.3. УГОЛ АЛЬФА

Мысленно поместим результирующий вектор возбуждения желудочков внутрь треугольника Эйнтховена. Угол, образованный направлением результирующего вектора и осью I стандартного отведения, есть искомый угол альфа α.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Величину угла альфа находят по специальным таб­лицам или схемам, предварительно определив на электрокардиограмме алгебраическую сумму зубцов желудоч­кового комплекса (Q + R + S) в I и III стандартных отведениях.

Найти алгебраическую сумму зубцов желудочкового комплекса достаточно просто. Измеряют в миллиметрах величину каждого зубца одного желудочкового комплекса QRS, учитывая при этом, что зубцы Q и S имеют знак «минус», поскольку находятся ниже изоэлектрической линии, а зубец R знак «плюс». Если какой-либо зубец на электрокардиограмме отсутствует, то его значение приравнивается к нулю.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Далее, сопоставляя найденную алгебраическую сумму зубцов для I и III стандартных отведений, по таблице определяют значение угла альфа. В нашем случае он равен минус 70°.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Значение угла альфа используется не только в определении положения электрической оси сердца, но и в установлении блокады ветвей левой ножки пучка Гиса.

Ниже приводится клиническое значение найденного по таблице угла альфа.

Если значение угла альфа будет меньше минус 30°(например, минус 70°, как в нашем примере), говорят о блокаде передней ветви левой ножки пучка Гиса.

Изменение угла альфа в пределах минус 30° свидетельствует о резком отклонении электрической оси сердца влево. В обиходе такое положение электрической оси сердца называют резкой левограммой.

Определяя угол альфа в пределах 0—50°, говорят об отклонении электрической оси сердца влево, или о левограмме.

Если угол альфа находится в пределах 50—70°, говорят о нормальном положении электрической оси сердца или нормограмме (электрическая ось сердца не отклонена).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

При отклонении электрической оси сердца вправо (правограмма) угол альфа будет определяться в пределах 70—90°.

Если угол альфа будет больше 90° (например, 97°), считают, что на данной ЭКГ имеет место блокада задней ветви левой ножки пучка Гиса.

Определение отклонения электрической оси сердца по углу альфа с использованием таблиц и схем производят в основном врачи кабинетов функциональной диагностики, где соответствующие таблицы и схемы всегда под рукой.

Однако определить отклонение электрической оси сердца можно и без специальных таблиц.

 

3.4. ВИЗУАЛЬНОЕ ОПРЕДЕЛЕНИЕ ЭЛЕКТРИЧЕСКОЙ ОСИ СЕРДЦА

В этом случае отклонение электрической оси находят по анализу зубцов R и S в I и III стандартных отведениях. В этих целях понятие алгебраической суммы зубцов желудочкового комплекса заменяют понятием «определяющий зубец» комплекса QRS, визуально сопоставляя по абсолютной величине зубцы R и S.

Говорят о «желудочковом комплексе R-типа», подразумевая, что в данном желудочковом комплексе более высоким является зубец R. Напротив, в «желудочковом комплексе S-типа» определяющим зубцом комплекса QRS является зубец S.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Если на электрокардиограмме в I стандартном отведении желудочковый комплекс представлен R-типом, а комплекс QRS в III стандартном отведении имеет форму S-типа, то в данном случае электрическая ось сердца отклонена влево (левограмма).

Схематично это условие записывается как RI-SIII.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Напротив, если в I стандартном отведении мы имеем S-тип желудочкового комплекса, а в III отведении R-тип комплекса QRS, то электрическая ось сердца отклонена вправо (правограмма).

Упрощенно это условие записывается как SI-RIII.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Результирующий вектор возбуждения желудочков расположен в норме во фронтальной плоскости так, что его направление совпадает с направлением оси II стандартного отведения. Именно поэтому все измерения интервалов и зубцов производятся в этом отведении.

На рисунке 35 видно, что амплитуда зубца R во II стандартном отведении наибольшая. В свою очередь зубец R в I стандартном отведении превосходит зубец RIII.

При таком соотношении зубцов R в различных стандартных отведениях имеет место нормальное положение электрической оси сердца (электрическая ось сердца не отклонена).

Краткая запись этого условия: RII > RI > RIII.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.5. ЭЛЕКТРИЧЕСКАЯ ПОЗИЦИЯ СЕРДЦА

Близкое по значению к электрической оси сердца имеет понятие «электрическая позиция сердца». Под электрической позицией сердца подразумевают направление результирующего вектора возбуждения желудочков относительно оси I стандартного отведения, принимая ее как бы за линию горизонта.

Различают вертикальное положение результирующего вектора относительно оси I стандартного отведения, назы­вая это вертикальной электрической позицией сердца, и горизонтальное положение вектора — горизонтальная электрическая позиция сердца.

Имеется также основная (промежуточная) электрическая позиция сердца, полугоризонтальная и полувертикальная. На рисунке 37 показаны все позиции результирующего вектора и соответствующие электрические позиции сердца.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.6. ОПРЕДЕЛЕНИЕ ЭЛЕКТРИЧЕСКОЙ ПОЗИЦИИ СЕРДЦА

Для этих целей анализируют соотношение амплитуды зубцов R желудочкового комплекса в униполярных отведе­ниях aVL и aVF, не забывая особенности графического отображения результирующего вектора регистрирующим электродом (рис. 20—23).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ИТОГИ ГЛАВЫ 3

1. Электрической осью сердца называется проекция результирующего вектора во фронтальной плоскости.

2. Электрическая ось сердца способна отклоняться от своего нормального положения либо вправо, либо влево.

3. Определить отклонение электрической оси сердца можно по измерению угла альфа.

 

Значение угла альфа

Положение электрической оси сердца

более 90°

блокада задней ветви левой ножки

90—70°

правограмма

70—50°

нормограмма

0—(-30)°

левограмма

меньше (-30)°

резкая левограмма, блокада передней ветви левой ножки

 

4. Определить отклонение электрической оси сердца можно визуально:

 RI-SIII левограмма,

 RII > RI > RIII нормограмма,

 SI-RIII правограмма.

5. Электрическая позиция сердца — это положение результирующего вектора возбуждения желудочков по отношению его к оси I стандартного отведения.

6. На ЭКГ электрическую позицию сердца определяют по амплитуде зубца R, сравнивая ее в отведениях aVL и aVF.

7. Различают следующие электрические позиции сердца:

 

Позиция

Амплитуда зубца R

Отведение aVL      

Отведение aVF

горизонтальная

зубец R большой

зубец R отсутствует

полугоризонтальная

зубец R большой        

зубец R малый

основная

амплитуда зубцов R одинаковая

полувертикальная

зубец R малый

зубец R большой

вертикальная

зубец R отсутствует       

зубец R большой

 

ДОПОЛНИТЕЛЬНАЯ ИНФОРМАЦИЯ К ГЛАВЕ 3

1. ПОНЯТИЕ «СКЛОННОСТЬ ЭЛЕКТРИЧЕСКОЙ ОСИ СЕРДЦА»

В некоторых случаях при визуальном определении положения электрической оси сердца наблюдается ситуация, когда ось отклоняется от своего нормального положения влево, но четких признаков левограммы на ЭКГ не определяется. Электрическая ось находится как бы в пограничном положении между нормограммой и левограммой. В этих случаях говорят о склонности к левограмме. При ана­логичной ситуации отклонения оси вправо говорят о склонности к правограмме.

 

2. ПОНЯТИЕ «НЕОПРЕДЕЛЕННАЯ ЭЛЕКТРИЧЕСКАЯ ПОЗИЦИЯ СЕРДЦА»

В ряде случаев на электрокардиограмме не удается найти условий, описанных для определения электрической позиции сердца. В таком случае говорят о неопределенной позиции сердца.

Многие исследователи полагают, что практическое значение электрической позиции сердца невелико. Ее используют обычно для более точной топической диагностики патологического процесса, происходящего в миокарде, и для определения гипертрофии правого или левого желудочка. Перейдем и мы к изучению электрокардиографических признаков гипертрофии.

 

 

ГЛАВА 4

ЭЛЕКТРОКАРДИОГРАФИЧЕСКИЕ ПРИЗНАКИ ГИПЕРТРОФИИ МИОКАРДА

В многочисленных руководствах по ЭКГ описывается достаточно большое количество электрокардиографических признаков гипертрофии миокарда. Так, М.С.Кушаковский (1986) указывает на 136 признаков гипертрофии миокарда, которые можно определить на ЭКГ.

Мы же остановимся на самых важных из них, имею­щих наибольшее практическое значение.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.1. ЭКГ-ПРИЗНАКИ ГИПЕРТРОФИИ

Сравним нормальный и гипертрофированный миокард.

1. В гипертрофированном миокарде возбуждение затратит гораздо больше времени для прохождения от эндокарда к эпикарду, чем в нормальном миокарде. Увеличение времени внутреннего отклонения — первый ЭКГ-признак гипертрофии.

2. В гипертрофированном миокарде вектор возбуждения, идущий от эндокарда к эпикарду, больше (длиннее) по сравнению с вектором нормального миокарда. Следовательно, регистрирующий электрод, расположенный над гипертрофированным миокардом, графически отобразит этот вектор на ЭКГ зубцом R, увеличенным по амплитуде по сравнению с зубцом R в норме. Увеличение амплитуды зубца R — второй ЭКГ-признак гипертрофии.

3. Кровоснабжение миокарда осуществляется по коронарным артериям, которые располагаются субэпикардиально, поэтому субэндокардиальные слои являются конечной областью кровоснабжения. Но в нормальном по толщине миокарде субэндокардиальные слои снабжаются кровью адекватно. При увеличении толщи миокарда субэндокардиальные слои начинают испытывать недостаток (дефицит) крови, притекающей к ним по коронарным артериям.

Ишемия субэндокардиальных слоев миокарда — третий ЭКГ-признак гипертрофии.

4. Проводящая система желудочков анатомически рас­положена под эндокардом. При ишемии субэндокардиальных слоев миокарда функция проводящих путей в определенной степени будет нарушена. Нарушение проводимости в гипертрофированном мио­карде — четвертый ЭКГ-признак гипертрофии.

5. В случае гипертрофии одного из желудочков его масса увеличивается за счет роста кардиомиоцитов. Его вектор возбуждения станет больше вектора возбуждения негипертрофированного желудочка, и результирующий вектор от­клонится в сторону гипертрофированного желудочка. С результирующим вектором неразрывно связана электрическая ось сердца, которая при гипертрофии будет отклоняться от своего нормального положения. Отклонение электрической оси сердца в сторону гипертрофированного желудочка — пятый ЭКГ-признак гипертрофии.

6. Электрическая позиция сердца также неразрывно связана с направлением результирующего вектора. При изменении направления результирующего вектора, обусловленном гипертрофией, будет меняться электрическая позиция сердца. Изменение электрической позиции сердца — шестой ЭКГ-признак гипертрофии.

7. При нормальном положении электрической оси сердца и основной электрической позиции сердца третье грудное отведение V3 является переходной зоной. Переходной зоной называют такое грудное отведение, в котором высота зубца R и глубина зубца S равны по своей абсолютной величине. Естественно, при изменении электрической оси и электрической позиции сердца изменится соотношение зубцов R и S в третьем грудном отведении. Переходная зона сместится в другое грудное отведение (в то отведение, где сохранится равенство величин зубцов R и S). Смещение переходной зоны — седьмой ЭКГ-признак гипертрофии.

Рассмотрим конкретно ЭКГ-картину гипертрофии каждого из желудочков, используя при этом выделенные 7 признаков.

 

4.2. ЭКГ-ПРИЗНАКИ ГИПЕРТРОФИИ МИОКАРДА ЛЕВОГО ЖЕЛУДОЧКА

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Увеличение времени внутреннего отклонения в левых грудных отведениях V5 и V6 более 0,05с.

2. Увеличение амплитуды зубца R в левых отведениях I, aVL, V5 и V6.

3. Смещение сегмента S—Т ниже изоэлектрической ли­нии, инверсия или двуфазность зубца Т в левых отведениях I, aVL, V5 и V6.

4. Нарушение проводимости по левой ножке пучка Гиса: полные или неполные блокады ножки.

5. Отклонение электрической оси сердца влево (левограмма).

6. Горизонтальная или полугоризонтальная электрическая позиция сердца.

7. Смещение переходной зоны в отведение V2 или V3.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.3. ЭКГ-ПРИЗНАКИ ГИПЕРТРОФИИ МИОКАРДА ПРАВОГО ЖЕЛУДОЧКА

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Предлагается самостоятельно найти на реальной кардиограмме признаки гипертрофии правого желудочка, аналогично анализу предыдущей схематической ЭКГ.

1. Увеличение времени внутреннего отклонения в правых грудных отведениях V1 и V2 более 0,03с.

2. Увеличение амплитуды зубца R в правых отведениях III, aVF, V1 и V2.

3. Смещение сегмента S—Т ниже изоэлектрической ли­нии, инверсия или двуфазность зубца Т в правых отведениях III, aVF, V1 и V2.

4. Нарушение проводимости по правой ножке пучка Гиса: полные или неполные блокады ножки.

5. Отклонение электрической оси сердца вправо (правограмма).

6. Вертикальная или полувертикальная электрическая позиция сердца.

7. Смещение переходной зоны в отведение V4 или V5.

 

4.4. ЭКГ-ПРИЗНАКИ ГИПЕРТРОФИИ ПРЕДСЕРДИЙ

Зубец Р представляет собой суммарное возбуждение обоих предсердий.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

В случае гипертрофии правого предсердия будут увеличиваться ширина и высота его пика возбуждения - 1-й и 2-й ЭКГ-признаки гипертрофии. Это обстоятельство приведет к тому, что суммарный пик возбуждения предсердий (зубец Р) станет выше по амплитуде, но не шире, поскольку пик возбуждения правого предсердия закончится раньше окончания возбуждения левого предсердия. В ряде случаев его очертания приобретают заостренную форму в виде шатра. Поскольку гипертрофия правого предсердия наблюдается чаще при заболеваниях легких, видоизмененный зубец Р в этих случаях называют еще P-pulmonale.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

При гипертрофии левого предсердия увеличиваются ширина и высота пика, отображающего его возбуждение. Суммарный зубец Р становится шире, его продолжительность увеличивается, а очертания приобретают форму двугорбости. Чаще всего гипертрофия левого предсердия наблюдается при митральных пороках сердца. Поэтому зубец Р при гипертрофии левого предсердия называют P-mitrale.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Таким образом, электрокардиографическими признаками гипертрофии правого предсердия являются увеличение амплитуды и заостренность зубца Р, часто его называют P-pulmonale; левого предсердия — уширение зубца Р более 0,12 с и его двугорбость, такой зубец называют P-mitrale.

 

ИТОГИ ГЛАВЫ 4

Существует ряд дополнительных методов, позволяющих точно установить гипертрофию миокарда. К ним относятся ультразвуковое исследование сердца, ядерно-магнитный резонанс, компьютерная рентгенотомография, рентгенодиагностика. Электрокардиография не позволяет точно выявить анатомическую гипертрофию миокарда. Однако полезно знать ЭКГ-признаки гипертрофии как для дальнейшего усвоения материала, так и для понимания ряда клинических ситуаций.

Электрокардиографических признаков гипертрофии много. Из множества этих признаков нами обозначено 7 наиболее важных в диагностике гипертрофии желудочков. Вовсе не обязательно наличие сразу всех признаков гипертрофии на ЭКГ. В ряде случаев удается установить только несколько из них.

Первый и второй признаки связаны с прохождением единичного вектора по миокарду, от эндокарда к эпикарду.

Третий и четвертый признаки характеризуют гипертрофию миокарда с перегрузкой.

Пятый, шестой и седьмой признаки обусловлены изменением результирующего вектора возбуждения желудочков.

 

ДОПОЛНИТЕЛЬНАЯ ИНФОРМАЦИЯ К ГЛАВЕ 4

Вы, конечно, обратили внимание, что одним из ЭКГ-признаков гипертрофии миокарда является нарушение проводимости. Например, электрическая ось сердца, существенно отклоняясь при гипертрофии влево (угол альфа меньше — 30°) или вправо (угол альфа больше +90°), свидетельствует о блокадах ветвей левой ножки пучка Гиса.

Зубец Р в форме P-mitrale действительно наблюдается при гипертрофии левого предсердия. Однако точно такой же по ширине (более 0,12с) и по форме (двугорбость) зубец Р регистрируется на электрокардиограмме при нарушении внутрипредсердной проводимости, иначе называемой внутрипредсердной блокадой.

Иными словами, электрокардиографические признаки гипертрофии тесно связаны с электрокардиографическими признаками нарушения проводимости, к рассмотрению которых мы и переходим.

 

 

ГЛАВА 5

НАРУШЕНИЕ ПРОВОДИМОСТИ

5.1. НАРУШЕНИЕ ВНУТРИЖЕЛУДОЧКОВОЙ ПРОВОДИМОСТИ

Проводящая система желудочков представлена стволом Гиса, который разделяется на две ножки — правую и левую. Правая ножка состоит из одного широкого пучка, который разветвляется в толще мускулатуры правого желудочка.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Левая ножка пучка Гиса делится на переднюю и заднюю ветви, которые разветвляются в мускулатуре, соответственно передней и задней стенок левого желудочка. Разветвляясь в мускулатуре, обе ножки образуют сеть так называемых волокон Пуркинье.

Напомним путь синусового импульса при возбуждении желудочков. В норме синусовый импульс, проходя по проводящей системе желудочков, возбуждает межжелудочковую перегородку и далее по ножкам пучка Гиса одновременно возбуждает оба желудочка. Для одновременного возбуждения желудочков синусовому импульсу требуется 0,10+0,02с, т.е. не более 0,12с.

При блокадах ножек пучка Гиса меняется и путь возбуждения желудочков, и время их возбуждения. Рассмотрим подробно эти изменения, помня о том, что путь прохождения возбуждения по желудочкам отображается на ЭКГ формой комплекса QRS, а время их возбуждения шириной этого же комплекса.

 

5.1.1. ПОЛНАЯ БЛОКАДА ПРАВОЙ НОЖКИ ПУЧКА ГИСА

1. ХОД ВОЗБУЖДЕНИЯ В ЖЕЛУДОЧКАХ

Вначале возбуждение охватывает межжелудочковую перегородку, затем в процесс возбуждения вовлекается незаблокированный левый желудочек, и только после этого возбудится заблокированный правый желудочек. Важно подчеркнуть, что к левому желудочку импульс возбуждения приходит своим обычным путем, а к заблокированному правому желудочку возбуждение передается от левого желудочка необычным, «окольным» путем через сеть волокон Пуркинье.

2. ФОРМА ЖЕЛУДОЧКОВОГО КОМПЛЕКСА

1. Необычный ход возбуждения в блокированном правом желудочке приведет к изменению формы комплекса QRS в правых грудных отведениях V1 и V2.

В этих отведениях комплекс QRS будет деформированным, расщепленным, т.е. представленным с двумя вершинами в виде буквы «М», в которой первая вершина R — возбуждение межжелудочковой перегородки, а вторая R`— возбуждение правого желудочка. Зубец S отображает возбуждение левого желудочка.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Записывают это условие буквами RsR` или Rsr` или rSr`, подчеркивая этим наличие двух вершин и величину зубцов относительно друг друга (строчные и прописные буквы).

2. Заблокированный правый желудочек вовлекался в процесс возбуждения необычным путем, следовательно, процесс угасания возбуждения также будет претерпевать изменения. Иными словами, в отведениях V1 и V2 при блокаде правой ножки зубец Т будет отрицательным.

3. ВРЕМЯ ВОЗБУЖДЕНИЯ ПРАВОГО ЖЕЛУДОЧКА

В заблокированный правый желудочек возбуждение пришло необычным путем, длилось гораздо дольше, чем в норме. Поэтому время внутреннего отклонения J в отведениях V1 и V2 будет больше нормального (0,02с). Ширина комплекса QRS также станет больше нормы, т.е. более 0,12с.

Наличие полной блокады правой ножки пучка Гиса приведет к изменению суммарного комплекса QRS, отображающего возбуждение обоих желудочков, который станет шире нормального — 0,10±0,02с, т.е. более 0,12с.

Суммарный комплекс QRS анализируется во II стандартном отведении.

4. ЭКГ-КРИТЕРИИ БЛОКАДЫ

Таким образом, электрокардиографическими признаками полной блокады правой ножки пучка Гиса являются:

 уширение комплекса QRS во II стандартном отведении более 0,12с,

 увеличение времени внутреннего отклонения в заблокированном правом желудочке, J больше 0,02с в правых грудных отведениях V1 и V2,

 уширение (более 0,12с), деформация и расщепление комплекса QRS в отведениях V1 и V2 в виде буквы «М».

 отрицательный зубец Т в отведениях V1 и V2.

Краткая запись критериев блокады:

 QRSII>0,12с, JV1V2>0,02с, QRSV1V2>0,12с в виде RsR`, T(-)V1 и T(-)V2.

 

5.1.2. ПОЛНАЯ БЛОКАДА ЛЕВОЙ НОЖКИ ПУЧКА ГИСА

1. ХОД ВОЗБУЖДЕНИЯ В ЖЕЛУДОЧКАХ

Вначале возбуждение охватывает межжелудочковую перегородку, затем по неизмененной правой ножке возбуждение достигает правого желудочка, и в последнюю очередь возбуждение охватит заблокированный левый желудочек. Причем к нему возбуждение придет не по левой ножке (проведение по ней нарушено), а через сеть волокон Пуркинье от правого желудочка.

2. ФОРМА ЖЕЛУДОЧКОВОГО КОМПЛЕКСА

В левых грудных отведениях V5 и V6 желудочковый комплекс QRS будет претерпевать наибольшие изменения: он будет уширен, деформирован и чаше расщеплен, т.е. представлен с двумя вершинами. Первая вершина — возбуждение межжелудочковой перегородки, вторая вершина — возбуждение левого желудочка, седловина между пиками — возбуждение правого желудочка. Его возбуждение настолько слабо проявляется в левых грудных отведениях, что не может «сформировать» полноценный зубец S, т.е. пика, который бы достиг изолинии.

Особое внимание при анализе формы желудочкового комплекса QRS обращают на дискордантность его основного зубца и зубца Т. При полной блокаде левой ножки пучка Гиса основным зубцом желудочкового комплекса QRS в левых грудных отведениях V5 и V6 всегда будет зубец R. Поэтому зубец Т (по правилу дискордантности) в этих отведениях всегда будет отрицательным.

3. ВРЕМЯ ВОЗБУЖДЕНИЯ ЛЕВОГО ЖЕЛУДОЧКА

В левых грудных отведениях время внутреннего отклонения будет существенно больше нормы (0,05с), а ширина желудочкового комплекса QRS превысит 0,12с.

Ширина суммарного комплекса QRS во II стандартном отведении, отображающего возбуждение обоих желудочков, также будет более 0,12с.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. ЭКГ-КРИТЕРИИ БЛОКАДЫ

Таким образом, электрокардиографическими признаками полной блокады левой ножки пучка Гиса являются:

 уширение желудочкового комплекса QRS во II стандартном отведении более 0,12с,

 увеличение времени внутреннего отклонения в заблокированном левом желудочке, J станет больше 0,05с,

 уширение (более 0,12с), деформация и расщепление желудочкового комплекса QRS в отведениях V5 и V6,

 отрицательный зубец Т в отведениях V5 и V6.

Краткая запись критериев блокады:

 QRSII>0,12с, JV5,V6>0,05с, QRSV5,V6>0,12с в виде RR`, (-)TV5 и (-)TV6.

 

ИТОГИ РАЗДЕЛА 5.1

При полных блокадах ножек пучка Гиса возбуждение желудочков изменено, отлично от нормального хода синусового импульса, поэтому будет изменяться как форма QRS, так и время возбуждения желудочков.

При полных блокадах ножек пучка Гиса желудочковый комплекс QRS во II отведении всегда больше 0,12с.

В блокированном желудочке увеличено время внутреннего отклонения.

Желудочковый комплекс QRS уширен и расщеплен (имеет две вершины) при блокаде правой ножки в правых грудных отведениях V1 и V2, при блокаде левой ножки в левых грудных отведениях V5 и V6.

 

ДОПОЛНИТЕЛЬНАЯ ИНФОРМАЦИЯ К РАЗДЕЛУ 5.1

1. АЛГОРИТМ ЭКГ-ДИАГНОСТИКИ БЛОКАД НОЖЕК ПУЧКА ГИСА

Как вы убедились, диагностировать полные блокады ножек пучка Гиса достаточно просто.

а) Взяв в руки электрокардиограмму, определяете ширину желудочкового комплекса QRS во II стандартном отведении: если она не превышает 0,12с блокады нет, в случае увеличения ширины более 0,12с имеет место полная блокада ножки пучка Гиса.

б) Чтобы определить, блокада какой ножки, следует посмотреть грудные отведения и установить увеличение времени внутреннего отклонения, а также расщепленность (две вершины) желудочкового комплекса QRS: если это наблюдается в правых грудных отведениях V1 и V2 блокада правой ножки, если это наблюдается в левых грудных отведениях V5,V6 блокада левой ножки.

Краткая запись:

 QRS<0,12c — блокады ножек нет, QRS>0,12c - блокада ножки есть, расщепленность V1 и V2 - блокада правой ножки, V5,V6 - блокада левой ножки.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Наблюдательный читатель заметит еще один алгоритм распознавания полных блокад ножек пучка Гиса. Как правило, за редким исключением, в блокированном желудочке имеет место отрицательный зубец Т. Следовательно, пункт «б» можно дополнить краткой записью:

 (—)V1 — блокада правой ножки; (—)TV6 — блокада левой ножки.

 

2. ПОНЯТИЕ НЕПОЛНЫХ БЛОКАД НОЖЕК ПУЧКА ГИСА

В практике нередко встречается понятие неполных блокад ножек пучка Гиса. Дадим им объяснение.

Правая ножка пучка Гиса анатомически представлена достаточно широким пучком, который в ряде случаев блокируется не полностью, а частично. На электрокардиограмме при этом имеет место характерная для полной блокады ножки расщепленность комплекса QRS в V1 и V2, однако ширина комплекса QRS во II стандартном отведении не превышает 0,12с. Это и есть случай неполной блокады правой ножки пучка Гиса.

Под неполной блокадой левой ножки пучка Гиса понимают блокаду одной из его ветвей — переднюю или заднюю.

Электрокардиографические критерии блокады ветвей нам известны. Выявляются эти блокады при определении угла альфа.

Если угол альфа больше +90° — блокада задней ветви левой ножки пучка Гиса.

Если угол альфа меньше -30° — блокада передней ветви левой ножки пучка Гиса.

Распознать блокады ветвей левой ножки можно и визуально, без определения угла альфа.

Если при выраженной левограмме во II стандартном отведении зубец S по своей амплитуде больше зубца R — это блокада передней ветви левой ножки пучка Гиса.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Если при выраженной правограмме во II стандартное отведение зубец R по своей амплитуде больше зубца S — имеет место блокада задней ветви левой ножки пучка Гиса.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. ПОНЯТИЕ НЕСПЕЦИФИЧЕСКИХ НАРУШЕНИЙ ВНУТРИЖЕЛУДОЧКОВОЙ ПРОВОДИМОСТИ

Нередко при анализе электрокардиограммы в одном или нескольких отведениях определяется расщепленность или зазубренность зубца R или зубца S, не подпадающие под известные нам признаки полной или неполной блокады ножек пучка Гиса. В этих случаях принято говорить о неспецифических нарушениях внутрижелудочковой проводимости. Важно подчеркнуть при этом, что ширина желудочкового комплекса существенно не изменяется и не превышает 0,12с. Суть этих неспецифических блокад связывают с нарушением проводимости по конечным, дистальным разветвлениям ножек пучка Гиса и волокнам Пуркинье.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. КЛАССИФИКАЦИЯ ВНУТРИЖЕЛУДОЧКОВЫХ БЛОКАД

О строении проводящей системы желудочков было сказано в начале раздела. Основные ее проводящие пути представлены стволом Гиса, который по ходу разделяется на две ножки — правую и левую, которые в свою очередь делятся на переднюю и заднюю ветви (см. рис. 47). Таким образом, система Гиса состоит из трех пучков.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Исходя из этого различают однопучковую внутрижелудочковую блокаду (называемую также фасцикулярной), подразумевая, что в этом случае блокирован только один проводящий пучок.

Имеет место двухпучковая внутрижелудочковая блокада, иначе именуемая как бифасцикулярная, при которой блокируются два составляющих пучка.

И, наконец, трехпучковая внутрижелудочковая блокада (трифасцикулярная). Этой блокаде свойственно нарушение проводимости синусового импульса по всем трем пучкам.

Рассмотрим подробнее варианты названных блокад.

1. Однопучковые внутрижелудочковые блокады:

а) полная блокада правой ножки;

б) блокада задней ветви левой ножки;

в) блокада передней ветви левой ножки.

2. Двухпучковые внутрижелудочковые блокады:

а) полная блокада левой ножки;

б) полная блокада правой ножки и блокада задней ветви левой ножки, иначе называемый задний гемиблок. В этом случае имеются все электрокардиографические признаки полной блокады правой ножки пучка Гиса и угол альфа, превышающий значение +90°

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

в) полная блокада правой ножки и блокада передней ветви левой ножки — передний гемиблок. Для этого варианта характерны все ЭКГ-признаки полной блокады правой ножки при значении угла альфа меньше -30°

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. Трехпучковая блокада.

При блокаде всех трех пучков проводящей системы желудочков синусовый импульс по ним пройти не может, иными словами, существует препятствие для его проведения от предсердий к желудочкам. Следовательно, трехпучковая блокада является не только вариантом внутрижелудочковых блокад, но имеет уже иное качество. Ее можно рассматривать и как вариант предсердно-желудочковой (атриовентрикулярной) блокады, к изучению которой мы и переходим.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.2. НАРУШЕНИЕ АТРИОВЕНТРИКУЛЯРНОЙ ПРОВОДИМОСТИ

Изложение материала о нарушении атриовентрикулярной проводимости начинают с классификации. Принято различать три степени атриовентрикулярной блокады, каждая из которых имеет свое название:

1. Атриовентрикулярная блокада 1 степени — замедление атриовентрикулярной проводимости.

2. Атриовентрикулярная блокада 2 степени — неполная атриовентрикулярная блокада, имеет три варианта: Мобитц 1, Мобитц 2, высокостепенная блокада.

3. Атриовентрикулярная блокада 3 степени — полная атриовентрикулярная блокада, имеет два варианта: проксимальная, дистальная.

Рассмотрим различные степени и варианты атриовентрикулярной блокады подробнее, но прежде вспомним следующее.

Импульс, образовавшийся в синусовом узле, выходит за его пределы и попадает в проводящую систему предсердий, представленную пучком Бахмана. По этой проводящей системе возбуждение распространяется на правое, а затем и на левое предсердие. Электрокардиографически данный процесс отображается формированием зубца Р. Нижняя веточка этого пучка Бахмана приведет синусовый импульс к атриовентрикулярному соединению. Синусовый импульс, достигая атриовентрикулярного соединения, проходит по нему, претерпевая физиологическую задержку своего проведения.

Физиологическая задержка импульса необходима для нормальной внутрисердечной гемодинамики: предсердия, сокращаясь (после возбуждения), перегоняют кровь в желудочки, наполняя их, а затем следует возбуждение и последующее сокращение желудочков.

Нами неоднократно отмечалось, что время, в течение которого импульс проходит по атриовентрикулярному соединению, в норме равно 0,10±0,02с, т.е. не более 0,12с и отображается интервалом Р—Q.

 

5.2.1. АТРИОВЕНТРИКУЛЯРНАЯ БЛОКАДА I СТЕПЕНИ — ЗАМЕДЛЕНИЕ

Если синусовый импульс проходит атриовентрикулярное соединение более чем за 0,12с, например за 0,14с, имеет место замедление атриовентрикулярной проводимости, или атриовентрикулярная блокада 1 степени.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Важно уяснить, что при атриовентрикулярной блокаде 1 степени все импульсы, вышедшие из синусового узла, проходят атриовентрикулярное соединение и достигают желудочков, пусть медленно, пусть с задержкой, но проходят, и проходят все.

 

5.2.2. АТРИОВЕНТРИКУЛЯРНАЯ БЛОКАДА II СТЕПЕНИ — НЕПОЛНАЯ

Для атриовентрикулярной блокады 2 степени характерно, что часть импульсов, вышедших из синусового узла, не проходят атриовентрикулярное соединение и к желудочкам не попадают. Следовательно, эта часть синусовых импульсов, заблокированных атриовентрикулярным соединением, не может вызвать возбуждение желудочков. Поэтому на электрокардиограмме после зубца Р (возбуждение предсердий) желудочкового комплекса QRS, отображающего возбуждение желудочков, не будет.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Таким образом, синусовые импульсы, прошедшие атриовентрикулярное соединение, приведут к формированию комплекса QRS. Это отчетливо будет видно на ЭКГ ленте: вслед за зубцом Р будет записываться комплекс QRS.

Напротив, синусовые импульсы, не прошедшие атриовентрикулярное соединение, будут «одинокими», без связи с комплексом QRS, что хорошо заметно на электрокардиограмме: вслед за зубцом Р на ЭКГ ленте записывается прямая изоэлектрическая линия.

В зависимости от того, какая часть синусовых импульсов не проходит атриовентрикулярное соединение и теряется в нем, различают несколько вариантов атриовентрикулярной блокады 2 степени.

а) ВАРИАНТ МОБИТЦ I

В ряде случаев атриовентрикулярная проводимость как бы постепенно ухудшается с каждым последующим проведением очередного синусового импульса, достигая в определенный момент такого ухудшения, что проведение им­пульса становится невозможным.

Предположим, что из синусового узла вышло четыре импульса. Первый из них пройдет атриовентрикулярное соединение без существенной задержки (время прохождения— интервал Р—Q равен 0,12с). Второй импульс тоже пройдет атриовентрикулярное соединение, но затратит на это времени больше, чем первый (время прохождения — интервал Р—Q составит 0,14с). Третий импульс также пройдет по атриовентрикулярному соединению: с огромным трудом, с большой задержкой, но пройдет (время прохождения — интервал Р—Q равен 0,16с). А вот четвертому им­пульсу не повезло: атриовентрикулярная проводимость к этому моменту настолько ухудшилась, что его проведение стало невозможным.

Такой вариант блокирования проведения синусового им­пульса по атриовентрикулярному соединению назван вариантом Мобитц 1. При этом подчеркивается периодика прохождения синусовых импульсов 4:3, т.е. из четырех синусовых импульсов атриовентрикулярное соединение прошли только три.

 

 

 

 

 

 

 

 

 

 

 

 

Естественно, что при варианте Мобитц 1 может наблюдаться и другая периодика, например 5:4, 6:5 и т.д. Могут иметь место также иные темпы постепенного затруднения проводимости каждого последующего синусового импульса, и, как следствие, время прохождения атриовентрикулярного соединения будет отлично от нашего случая, например изменение интервала Р—Q в пределах 0,16с - 0,19с - 0,22с.

Постепенное удлинение интервала Р—Q описали независимо друг от друга Венкебах и Самойлов. В их честь эта разновидность периодики названа периодикой Венкебаха—Самойлова.

б) ВАРИАНТ МОБИТЦ II

По мере ухудшения условий проведения синусового импульса по атриовентрикулярному соединению наблюдается другой вариант неполной блокады — Мобитц 2. При этом варианте проводимость соединения настолько ухудшена, что после прохождения одного синусового импульса проведение к желудочкам второго становится уже невозможным. На электрокардиограмме в этом случае отчетливо заметно, что после прохождения первого синусового импульса (зубец Р,) формируется желудочковый комплекс QRS, а проведение второго импульса заблокировано; после зубца Р2 нет комплекса QRS, на ЭКГ ленте вычерчивается прямая изолиния.

Важно подчеркнуть, что в связанных предсердно-желудочковых комплексах Р—QRS интервал Р—Q остается постоянным, т.е. не изменяется в отличие от варианта Мобитц 1.

Поэтому Мобитц 2 называют еще и вариантом неполной атриовентрикулярной блокады с постоянным (фиксированным) интервалом Р—Q.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Указанная периодика 2:1 свидетельствует, что из двух синусовых импульсов атриовентрикулярное соединение прошел только один. Естественно, имеет место и другая периодика, например 3:1, которая подразумевает, что из трех синусовых импульсов только один пройдет атриовентрикулярное соединение и достигнет желудочков, возбу­див их. Бывают периодики 4:1, 5:1, 6:1.

в) ВАРИАНТ «ВЫСОКОСТЕПЕННАЯ БЛОКАДА»

Какова же будет частота возбуждения (сокращения) желудочков при периодике 4:1, если синусовый узел вырабатывает, скажем, 80 импульсов в минуту? Всего 20 сокращений в минуту. Конечно, при такой частоте сердечных сокращений пациент будет находиться в критическом состоянии. Поэтому, учитывая особую опасность для жизни пациента, периодики 4:1 и выше выделяют в особый вариант неполной атриовентрикулярной блокады — высокостепенную блокаду.

Наконец, по мере дальнейшего ухудшения атриовентрикулярной проводимости наступает такое состояние, когда ни один синусовый импульс не проходит атриовентрикулярное соединение. Это и есть полная атриовентрикулярная блокада.

 

5.2.3. АТРИОВЕНТРИКУЛЯРНАЯ БЛОКАДА III СТЕПЕНИ — ПОЛНАЯ

При полной атриовентрикулярной блокаде предсердия возбуждаются от основного водителя ритма сердца — от синусового узла. Поэтому на электрокардиограмме будет иметь место зубец Р, регистрируемый с определенной постоянной частотой (например, 90 в минуту), а интервалы Р—Р, измеренные на разных участках ЭКГ ленты, будут одинаковыми (в нашем примере 0,67с).

А что же будет водителем ритма для желудочков, если импульсы от синусового узла к желудочкам через заблокированное атриовентрикулярное соединение не проходят? В этих ситуациях активизируются водители ритма сердца 2 порядка. Для понимания сути полной атриовентрикулярной блокады, настала очередь поговорить о них подробнее.

Пейсмекерные клетки, т.е. специфические клетки миокарда, способные генерировать электрический импульс, во множестве заложены в проводящей системе сердца. Помимо известного нам скопления их в синусовом узле, пейсмекерные клетки располагаются также в атриовентрикулярном соединении, в ножках и ветвях пучка Гиса, в волокнах Пуркинье. Чем дистальнее от синусового узла расположены пейсмекерные клетки, тем меньшей активностью они обладают, и частота генерации импульса у них существенно уступает частоте образования синусового импульса. Поэтому в норме синусовый импульс, образуясь чаще, как бы подавляет активность пейсмекерных клеток низшего порядка (разряжает их электрический потенциал). И в нормальных условиях эти пейсмекерные клетки не могут проявить себя как водители ритма сердца. Иное дело — полная атриовентрикулярная блокада, при которой синусовый импульс не может пройти атриовентрикулярное соединение и разрядить его пейсмекерные клетки. В этом случае пейсмекеры атриовентрикулярного соединения берут на себя роль водителя ритма для желудочков.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Однако частота генерации импульса этими клетками значительно ниже частоты, генерируемой пейсмекерами синусового узла. Поэтому желудочки будут возбуждаться реже, чем предсердия, и на ЭКГ ленте интервал R—R будет длиннее интервала Р—Р. Частота, с которой возбуждаются желудочки, равна приблизительно 40 в минуту, а длина интервала R—R в этом случае 1,5с.

Форма желудочкового комплекса QRS при этом существенных изменений не претерпевает, поскольку к желудочкам импульс от пейсмекерных клеток атриовентрикулярного соединения попадает своим обычным путем — по проводящей системе Гиса. Ширина комплекса QRS будет в пределах нормы 0,10±0,02с и не превышает 0,12с.

 

 

 

 

 

 

 

 

 

 

 

 

 

Естественно, одновременное существование двух независимых ритмов (синусового для предсердий, атриовентрикулярного для желудочков) неминуемо приведет к ситуации, когда в определенный момент оба ритма совпадут. На электрокардиограмме при этом произойдет наложение зубца Р (предсердный ритм) на комплекс QRS (желудочковый ритм), и в итоге получится так называемый сливной комплекс.

 

 

 

 

 

 

 

 

 

 

 

 

 

Внимательный читатель заметит, что излагая материал о нарушении внутрижелудочковой проводимости, вариант трехпучковой (трифасцикулярной) блокады мы назвали полной атриовентрикулярной блокадой. В то же время, в этом разделе описан иной механизм формирования полной атриовентрикулярной блокады.

Мы не погрешили против истины. Действительно, имеет место полная атриовентрикулярная блокада как следствие блокады всех трех ветвей проводящей системы желудочков, и есть полная атриовентрикулярная блокада как результат существенного ухудшения атриовентрикулярной проводимости.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Блокаду, которая имеет место в самом атриовентрикулярном соединении, называют проксимальной; она как бы ближе по анатомическому уровню к предсердиям. Трехпучковую блокаду называют дистальной, подчеркивая ее удаленность от предсердий. Однако суть не только в различном названии этих вариантов полной блокады, главное — наличие разных источников ритма для желудочков.

Если при проксимальной полной атриовентрикулярной блокаде источником ритма для желудочков являются пейсмекерные клетки атриовентрикулярного соединения, то при дистальной блокаде желудочки возбуждаются от пейсмекерных клеток, расположенных в одной из ножек пучка Гиса.

Активность пейсмекерных клеток 3 порядка, заложенных в ножках пучка Гиса, очень невелика. Они способны генерировать импульс с частотой не более 25—30 в минуту, в отличие от пейсмекерных клеток атриовентрикулярного соединения (частота около 40 в минуту).

Поэтому при дистальной атриовентрикулярной блокаде желудочковые комплексы QRS будут регистрироваться на ЭКГ ленте с частотой 25—30 в минуту. Кроме того, эти комплексы в отличие от нормальной формы QRS при проксимальной блокаде будут деформированы и уширены, напоминая форму комплекса QRS при блокаде ножки пучка Гиса. Объясним этот момент.

Предположим, водителем ритма для желудочков при дистальной полной блокаде будут пейсмекерные клетки, расположенные в правой ножке пучка Гиса. Проследим ход возбуждения желудочков.

Сначала возбудится правый желудочек (пейсмекерные клетки находятся в правой ножке), а затем возбуждение охватит левый желудочек.

Вспомните, такой ход возбуждения в желудочках наблюдался при блокаде левой ножки пучка Гиса. Следовательно, форма желудочковых комплексов QRS при наличии активных пейсмекерных клеток в правой ножке будет напоминать на ЭКГ форму комплексов QRS при блокада левой ножки пучка Гиса.

Если водитель ритма для желудочков при полной дистальной блокаде располагается в левой ножке Гиса, то желудочковые комплексы QRS похожи на блокадные, как при нарушении проведения импульса по правой ножке.

Таким образом, дистальную полную атриовентрикулярную блокаду отличает от проксимальной как меньшая частота возбуждения желудочков (25—30), так и форма комплекса QRS, напоминающая блокаду ножки пучка Гиса.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ИТОГИ РАЗДЕЛА 5.2

1. Атриовентрикулярная блокада — это нарушение проведения синусового импульса по атриовентрикулярному со­единению, препятствие его нормальному прохождению.

2. Степень выраженности препятствия для прохождения импульса может быть различной — от ЗАМЕДЛЕНИЯ скорости его прохождения до блокады ЧАСТИ или ВСЕХ синусовых импульсов.

3. В случаях полной атриовентрикулярной блокады водителем ритма для предсердий остается синусовый узел, а желудочки возбуждаются от пейсмекерных клеток атриовентрикулярного соединения при проксимальной блокаде или в ритме пейсмекеров, располагающихся в системе пучка Гиса при дистальной атриовентрикулярной блокаде.

4. Форма желудочкового комплекса QRS при полной проксимальной блокаде обычная, при дистальной уширена 0,12с, деформирована, расщеплена. Сконцентрируем электрокардиографические критерии атриовентрикулярных блокад согласно приведенной в начале главы их классификации.

1. Атриовентрикулярная блокада 1 степени — замедление атриовентрикулярной проводимости:

а) ЧСС практически нормальная — 60—90 в минуту

б) все зубцы Р связаны с комплексом QRS

в) интервал Р—Q больше нормального 0,12с.

2. Атриовентрикулярная блокада 2 степени — неполная атриовентрикулярная блокада. Имеет три варианта.

Мобитц 1:

а) ЧСС несколько уменьшена;

б) не все зубцы Р связаны с комплексом QRS;

в) интервал Р—Q изменчив, постепенно удлиняется от предыдущего к последующему комплексу Р—QRS;

г) имеется периодика 4:3, 5:4, 6:5 и др.

Мобитц 2:

а) ЧСС уменьшена;

б) не все зубцы Р связаны с комплексом QRS;

в) интервал Р—Q постоянен;

г) имеется периодика 2:1,3:1.

Высокостепенная блокада:

а) ЧСС существенно уменьшена;

б) единичные зубцы Р связаны с комплексом QRS;

в) интервал Р—Q постоянен;

г) имеется периодика 4:1,5:1,6:1.

3. Атриовентрикулярная блокада 3 степени — полная атриовентрикулярная блокада. Имеет два варианта.

Проксимальная:

а) ЧСС около 40 в минуту;

б) интервал Р—Р одинаков, отличный от интервала R—R;

в) нет никакой связи зубца Р с комплексом QRS;

г) комплекс QRS обычной формы, ширина не более 0,12с;

д) имеют место сливные комплексы.

Дистальная:

а) ЧСС около 20—25 в минуту;

б) интервал Р—Р одинаковый, отличный от интервала R-R;

в) нет никакой связи зубца Р с комплексом QRS;

г) комплекс QRS деформирован, уширен более 0,12с, напоминает по форме блокаду ножек пучка Гиса;

д) имеют место сливные комплексы.

 

5.3. НАРУШЕНИЕ ВНУТРИПРЕДСЕРДНОЙ ПРОВОДИМОСТИ

По ходу изложения данных различных разделов «Азбуки ЭКГ», мы уже неоднократно оговаривали суть внутрипредсердной блокады. Попытаемся сконцентрировать эти разрозненные данные в настоящем разделе.

Под нарушением внутрипредсердной проводимости понимают любые препятствия, возникающие на пути синусового импульса при его прохождении по проводящей системе предсердий.

Обычно синусовый импульс проводится по системе пучка Бахмана, который имеет несколько ветвей: межпредсердную ветвь, которая соединяет правое и левое предсердия, нижнюю атриовентрикулярную ветвь, идущую к атриовентрикулярному соединению, а также широкую разветвленную сеть в обоих предсердиях.

Вполне естественно, если синусовый импульс будет продвигаться не по привычным для него ответвлениям пучка Бахмана, а иными путями, то прежде всего изменится форма зубца Р, отображающего на ЭКГ путь синусового импульса. С другой стороны, время, которое затратит синусовый импульс, проходя не своим привычным путем, будет больше, чем в норме.

Поэтому электрокардиографическими признаками внутрипредсердной блокады будут:

1. Изменение формы зубца Р — его расщепленность, зазубренность, двугорбость и пр.

2. Уширение зубца Р больше нормы, т.е. более 0,12с.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ДОПОЛНИТЕЛЬНАЯ ИНФОРМАЦИЯ К ГЛАВЕ 5

1. Синоаурикулярная блокада.

Под синоаурикулярной блокадой понимают нарушение выхода импульса из синусового узла в проводящую систему предсердий. Эта блокада встречается крайне редко, ее рассматривают как один из ЭКГ-вариантов синдрома слабости синусового узла.

Принято различать три степени синоаурикулярной блокады.

При 1 степени синоаурикулярной блокады четких, общепризнанных ЭКГ критериев нет.

Для синоаурикулярной блокады 2 степени (неполная) характерно выпадение целого предсердно-желудочкового комплекса Р—QRS, при этом интервал Р—Р, включающий выпавший комплекс, ровно (или почти ровно) в 2 раза длиннее нормального интервала Р—Р.

 

 

 

 

 

 

 

 

 

 

 

 

 

Синоаурикулярная блокада 3 степени (полная) характеризуется отсутствием синусового ритма, вместо которого регистрируются замещающие ритмы (ритм атриовентрикулярного соединения: предсердные ритмы, мерцательная аритмия и другие, о которых будет сказано далее).

 

 

ГЛАВА 6

НАРУШЕНИЕ ВОЗБУДИМОСТИ

Возбудимость — это свойство ткани отвечать на раздражение (импульс). В кардиологии под возбудимостью миокарда понимают его способность отвечать сокращением на электрические импульсы, исходящие в норме из синусового узла.

Следовательно, нарушение возбудимости (аритмия) — это ответная реакция миокарда на импульс возбуждения, очаг которого находится вне синусового узла (гетеротопный источник). Иными словами, аритмия — это работа сердца в любом другом сердечном ритме, не являющемся регулярным синусовым ритмом нормальной частоты.

В этой связи представляется уместным дать понятие синусового ритма.

Синусовый ритм — это образование электрических импульсов пейсмекерными клетками синусового узла с определенной последовательностью и частотой.

На электрокардиограмме правильный синусовый ритм имеет четкие признаки:

1. Частота зубцов Р 60—90 в мин.

2. Интервал Р—Р одинаковый.

3. Зубец Р положителен во II стандартном отведении.

4. Зубец Р отрицателен в отведении aVR.

Первые два признака соответствуют понятию ритма, т.е. это чередование зубцов Р, происходящее с определенной частотой, последовательностью и скоростью.

Третий и четвертый признаки указывают на месторасположение (топику) пейсмекерных клеток, конкретно — в синусовом узле.

Заслуживает особого внимания второй признак синусового ритма — одинаковость интервала Р—Р. Для правильного синусового ритма она должна соблюдаться.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

В ряде случаев эти интервалы могут различаться между собой. Например, одни интервалы Р—Р равны 0,92с, а другие интервалы Р—Р имеют продолжительность 0,88с. Разница небольшая, всего 0,04с, т.е. не превышает 0,12с. В этих случаях принято говорить о неправильном синусовом ритме.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Если же разница между наибольшим и наименьшим интервалами Р—Р составляет более 0,12с, то имеет место синусовая аритмия.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Аритмия (греч. — arrhythmia) понимается как нестройность или (в крайней степени своей выраженности) как отсутствие ритма.

Существует достаточно много разновидностей аритмий, но мы рассмотрим главные, наиболее часто встречающиеся виды — экстрасистолию, пароксизмальную тахикардию, мерцание и трепетание.

 

6.1. ЭКСТРАСИСТОЛИЯ

Среди различных нарушений ритма сердца экстрасистолия встречается чаще всего.

Под экстрасистолией понимают внеочередное возбуждение (и последующее сокращение) всего сердца или его отделов.

Причиной экстрасистолы считают наличие активного гетеротопного очага, который генерирует достаточно значимый по электрической силе импульс, способный «перебить», нарушить работу основного водителя ритма сердца — синусового узла.

Если гетеротопный (он же эктопический) очаг, вызывающий внеочередное возбуждение (сокращение) сердца, находится в предсердиях, такую экстрасистолу принято называть предсердной.

При желудочковой экстрасистоле эктопический очаг находится соответственно в желудочках.

 

6.1.1. ПРЕДСЕРДНАЯ ЭКСТРАСИСТОЛИЯ

1. Первый ЭКГ-признак

Поскольку экстрасистола — это внеочередное возбуждение, то на ЭКГ месторасположение ее будет раньше предполагаемого очередного синусового импульса. Поэтому предэкстрасистолический интервал, т.е. интервал между синусовым и экстрасистолическим комплексом, будет меньше интервала между синусовыми комплексами.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Краткая запись: интервал R(c)—R(э) <интервала R(c)-R(c).

2. Второй ЭКГ-признак

Поскольку экстрасистолический (он же эктопический, он же гетеротопный) очаг находится в предсердиях, то предсердия будут вынуждены возбуждаться от импульса из этого очага. Возбуждение предсердий отображается на ЭКГ формированием зубца Р.

Следовательно, перед желудочковым экстрасистолическим комплексом будет регистрироваться экстрасистолический зубец Р, отличный от нормального зубца Р.

Краткая запись: имеется зубец Р(э), отличный от зубца Р(с).

3. Третий ЭКГ-признак

Поскольку экстрасистолический импульс после возбуждения предсердий попадает к желудочкам по основным нормальным проводящим путям (атриовентрикулярное соединение, пучок Гиса, его ножки), то форма желудочкового экстрасистолического комплекса ничем не отличается от формы нормального (синусового) желудочкового комплекса.

Краткая запись: по форме QRS(э) не отличается от QRS(c).

4. Четвертый ЭКГ-признак

Непосредственно после экстрасистолического импульса в подавляющем большинстве случаев имеет место постэкстрасистолический интервал, или компенсаторная пауза. Если сложить длину предэкстрасистолического и постэкстрасистолического интервалов, то при полной компенсаторной паузе указанная сумма интервалов будет равна длине двух нормальных синусовых интервалов R—R. В случае предсердной экстрасистолии компенсаторная пауза является неполной, т.е. сумма пред- и постэкстрасистолического интервалов меньше длины двух синусовых интервалов R—R.

Краткая запись: неполная компенсаторная пауза, интервал R(c)—R(э)—R(c) < интервала R(c)—R(c)—R(c).

 

6.1.2. ЖЕЛУДОЧКОВАЯ ЭКСТРАСИСТОЛА

Активный экстрасистолический очаг находится в желудочках.

1. Первый ЭКГ-признак

Этот признак характеризует экстрасистолу как таковую, вне зависимости от места расположения эктопического очага.

Краткая запись: интервал R(c)—R(э) < интервала R(c)-R(c).

2. Второй ЭКГ-признак

Атриовентрикулярное соединение способно пропускать любые импульсы только в одном направлении — от предсердий к желудочкам. Поэтому экстрасистолический импульс, возбудив желудочки, к предсердиям через атриовентрикулярное соединение не пройдет.

Следовательно, предсердия от экстрасистолического импульса не возбудятся и зубца Р(э) перед экстрасистолическим желудочковым комплексом не будет.

Краткая запись: отсутствует зубец Р(э).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. Третий ЭКГ-признак

Топически располагаясь в одном из желудочков, экстрасистолический очаг возбудит сначала желудочек, в котором он находится, а затем другой желудочек, т.е. желудочки будут возбуждаться не одновременно, а поочередно. Следовательно, желудочковый экстрасистолический комплекс QRS будет уширен (более 0,12с), деформирован как при блокаде ножки пучка Гиса.

Краткая запись: комплекс QRS(э)>0,12с, деформирован.

4. Четвертый ЭКГ-признак

Поскольку экстрасистолический импульс ретроградно не преодолевает атриовентрикулярное соединение и не распространяется по предсердиям, то он не нарушает ритмичную работу синусового узла, т.е. не разряжает его. Поэтому сумма предэкстрасистолического и постэкстрасистолического интервалов равна двум нормальным синусовым интервалам R—R, т.е. имеет место полная компенсаторная пауза.

Краткая запись: полная компенсаторная пауза, интервал R(c)—R(э)—R(c) = интервалу R(c)—R(c)—R(c).

 

ИТОГИ РАЗДЕЛА 6.1

ЭКГ-признаки предсердной экстрасистолии:

1. Интервал R(c)—R(э) < интервала R(c)—R(c).

2. Имеется зубец Р(э), отличный от зубца Р(с).

3. Комплекс QRS(3) не отличается от комплекса QRS(c).

4. Неполная компенсаторная пауза.

ЭКГ-признаки желудочковой экстрасистолии:

1. Интервал R(c)—R(э) < интервала R(c)—R(c).

2. Зубец Р(э) отсутствует.

3. Комплекс QRS(э)>0,12с, деформирован.

4. Полная компенсаторная пауза.

 

ДОПОЛНИТЕЛЬНАЯ ИНФОРМАЦИЯ К РАЗДЕЛУ 6.1

В большинстве случаев экстрасистол имеет место компенсаторная пауза, однако иногда ее может и не быть, что наблюдается при интерполированных и групповых экстрасистолах.

Длительность компенсаторной паузы (полная или неполная) зависит от вмешательства или невмешательства экстрасистолического импульса в работу основного водителя ритма сердца — синусового узла.

 

1. НЕПОЛНАЯ КОМПЕНСАТОРНАЯ ПАУЗА

При нахождении гетеротопного очага возбуждения в предсердиях импульс, выходящий из него, нарушает ритмичную работу синусового узла. Этот импульс «разряжает» до нуля электрический потенциал синусового узла, работа которого начинается как бы с новой точки отсчета. Поэтому следующий после экстрасистолы синусовый импульс возникает через промежуток времени, в течение которого происходит восстановление потенциала синусового узла. Этот промежуток (постэкстрасистолический интервал) равен продолжительности нормального синусового интервала R—R.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Если учесть, что предэкстрасистолический интервал всегда меньше нормального синусового интервала, то сумма пред- и постэкстрасистолического интервалов будет меньше двух нормальных интервалов R—R.

Это и есть неполная компенсаторная пауза.

 

2. ПОЛНАЯ КОМПЕНСАТОРНАЯ ПАУЗА

В случае расположения гетеротопного очага в желудочках экстрасистолический импульс не проходит через атриовентрикулярное соединение и не нарушает работу синусового узла.

Синусовый узел ритмично посылает импульсы в проводящую систему сердца, несмотря на экстрасистолу. Один из этих синусовых импульсов, приходя к желудочкам, застает их в состоянии возбуждения от экстрасистолического импульса: они не могут ответить на синусовый импульс в этот момент. На ЭКГ регистрируется экстрасистолический, а не синусовый желудочковый комплекс QRS. Желудочки сердца ответят на следующий после экстрасистолы синусовый импульс, и таким образом при сложении пред- и постэкстрасистолического интервалов получается значение, равное двум нормальным интервалам R—R.

Это и есть полная компенсаторная пауза.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. ТОПИКА ПРЕДСЕРДНЫХ ЭКСТРАСИСТОЛ

Месторасположение экстрасистолического очага в предсердиях определяют по изменению формы экстрасистоли­ческого зубца Р.

Вспомните: синусовый узел анатомически расположен в верхней части правого предсердия, поэтому синусовый импульс возбуждает предсердия справа налево и сверху вниз. При таком ходе возбуждения его вектор направлен от правой руки (aVR) и совпадает с осью II стандартного отведения, поэтому на ЭКГ записывается отрицательный зубец Р в отведении aVR и положительный зубец Р во II стандартном отведении.

Анализируя форму экстрасистолического зубца Р в отведениях aVR и II стандартном, определяют местонахождение эктопического очага в предсердиях. Например, у экстрасистолы, записанной во II отведении, имеется отрицательный зубец Р. Значит возбуждение предсердий в этом случае происходило снизу вверх, следовательно, экстрасистолический очаг находится в нижней части предсердий.

По мнению многих исследователей, определение места гетеротопного очага в предсердиях не имеет принципиального значения.

 

4. ТОПИКА ЖЕЛУДОЧКОВЫХ ЭКСТРАСИСТОЛ

Местоположение эктопического очага в желудочках определяют по сходству формы экстрасистолического желудочкового комплекса QRS с формой такового комплекса при блокаде ножек пучка Гиса.

Рассмотрим ход распространения экстрасистолического импульса при нахождении очага в правом желудочке (правожелудочковая экстрасистола) — вначале возбудится правый желудочек, а затем левый. Такой ход возбуждения наблюдается при блокаде левой ножки пучка Гиса. Следовательно, экстрасистолический желудочковый комплекс QRS будет похож на желудочковый комплекс QRS, как при блокаде левой ножки.

При расположении эктопического очага в левом желудочке (левожелудочковая экстрасистола) экстрасистолический комплекс QRS будет похож на комплекс QRS, как при блокаде правой ножки пучка Гиса.

По мнению многих исследователей, определение места гетеротопного очага в желудочках не имеет принципиального значения.

 

5. ИНТЕРПОЛИРОВАННЫЕ ЭКСТРАСИСТОЛЫ

Интерполированной, или вставочной, экстрасистолой называют экстрасистолу, не имеющую постэкстрасистолического интервала. Она как бы вставлена между двумя нормальными синусовыми комплексами, т.е. интервалы между синусовыми комплексами, включающими экстрасистолу, и обычными интервалами без экстрасистолы равны по продолжительности.

 

 

 

 

 

 

 

 

 

 

 

 

 

6. ЕДИНИЧНЫЕ И ЧАСТЫЕ ЭКСТРАСИСТОЛЫ

Единичной называют экстрасистолу, возникающую с частотой менее чем одна экстрасистола на 40 нормальных синусовых комплексов.

Напротив, если экстрасистолы регистрируются чаще, чем одна экстрасистола на 40 нормальных синусовых комплексов, такую экстрасистолию называют частой.

 

7. СВЕРХРАННЯЯ, РАННЯЯ И ПОЗДНЯЯ ЭКСТРАСИСТОЛЫ

По времени своего возникновения после нормального синусового импульса экстрасистолы подразделяют на сверхранние, ранние и поздние. Для установления вида экстрасистол определяют интервал сцепления.

Под интервалом сцепления экстрасистолы понимают интервал между окончанием процессов реполяризации (конец зубца Т) и началом экстрасистолы (зубец R).

 

 

 

 

 

 

 

 

 

 

 

 

 

Если интервал сцепления экстрасистолы больше 0,12с, говорят о поздней экстрасистоле, при значении интервала меньше 0,12с экстрасистолу называют ранней.

В ряде случаев интервал сцепления отсутствует, т.е. экстрасистола возникает раньше, чем закончилась стадия реполяризации. На ЭКГ при этом определяется феномен «R на Т»: экстрасистолический зубец R приходится на зубец Т предыдущего синусового комплекса. Это есть сверхранняя экстрасистола.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8. МОНОТОННЫЕ И ПОЛИГОННЫЕ ЭКСТРАСИСТОЛЫ

Если экстрасистолы выходят из одного и того же эктопического очага, то при регистрации ЭКГ в одном конкретно взятом отведении эти экстрасистолы будут похожи по форме друг на друга как близнецы. Их называют монотопными экстрасистолами.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Напротив, существенное различие экстрасистол по форме в одном конкретном отведении свидетельствует о том, что эти экстрасистолы исходят из разных гетеротопных очагов. Такие экстрасистолы называют политопными.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

9. ГРУППОВЫЕ (ЗАЛПОВЫЕ) ЭКСТРАСИСТОЛЫ

Для этой разновидности экстрасистолии характерно следование сразу нескольких экстрасистол подряд (как бы залпом), без постэкстрасистолической паузы. Подряд стоящих экстрасистол должно быть не более 7. Если их будет больше 7, например 10, принято говорить о коротком приступе пароксизмальной тахикардии.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10. АЛЛОРИТМИЧЕСКАЯ ЭКСТРАСИСТОЛИЯ

В ряде случаев появление экстрасистолии упорядочено по отношению к синусовому ритму, например, экстрасистола строго чередуется с нормальным синусовым импульсом - бигимения. Нередко имеет место другая аллоритмия — тригимения, при которой экстрасистолия чередуется через два нормальных синусовых импульса.

 

 

 

 

 

 

 

 

11. ПРЕДФИБРИЛЛЯТОРНЫЕ ЭКСТРАСИСТОЛЫ

Под этим понятием объединяются несколько разновидностей желудочковых экстрасистол, выявление которых на ЭКГ свидетельствует о возможном развитии вскоре фибрилляции желудочков. Такими желудочковыми экстрасистолами являются:

— сверхранние и ранние;

— частые;

— политопные;

— групповые;

— аллоритмические.

 

6.2. ПАРОКСИЗМАЛЬНАЯ ТАХИКАРДИЯ

Для этой разновидности нарушения ритма сердца характерны два признака:

1. Тахикардия, т.е. возбуждение (и последующее сокращение) сердца с частотой 130—250 в минуту.

2. Пароксизм, т. е. внезапное начало и внезапное окончание приступа тахикардии, которые, как правило, уловить клинически и зарегистрировать электрокардиографически удается крайне редко.

Суть пароксизмальной тахикардии — появление в миокарде мощного гетеротопного очага возбуждения, генерирующего импульсы с частотой 130—250 в минуту, что «перебивает» или «заглушает» работу основного водителя ритма сердца — синусового узла.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

При расположении гетеротопного очага, заставляющего сердце работать в ритме пароксизмальной тахикардии в предсердиях, говорят о предсердной пароксизмальной тахикардии.

Электрокардиографические критерии предсердной пароксизмальной тахикардии просты: это стоящие подряд групповые предсердные экстрасистолы, но в количестве более 7.

В случае расположения очага возбуждения в желудочках мы имеем желудочковую пароксизмальную тахикардию. Ее критерии такие же — стоящие подряд более 7 групповых желудочковых экстрасистол.

 

6.3. ТРЕПЕТАНИЕ ПРЕДСЕРДИЙ И ЖЕЛУДОЧКОВ

Суть трепетания, достаточно редкой разновидности нарушения ритма сердца, такова же, как и пароксизмальной тахикардии, — появление в миокарде мощного гетеротопного очага, вырабатывающего импульсы с частотой 250—370 в мин.

Если очаг трепетания расположен в предсердиях, — имеет место трепетание предсердий. При нахождении этого очага в желудочках возникает трепетание желудочков.

Рассмотрим подробнее электрокардиографические критерии этих двух разновидностей трепетания.

6.3.1. ТРЕПЕТАНИЕ ПРЕДСЕРДИЙ

ЭКГ-признаки:

1. При трепетании предсердий основной водитель ритма сердца — синусовый узел — не работает, поскольку высокочастотные (250—370 в мин.) импульсы очага трепетания «перебивают» частоту генерации синусовых импульсов (60—90 в мин.), не давая возможности им проявиться.

Следовательно, первым ЭКГ-признаком трепетания предсердий будет отсутствие синусового ритма, т.е. отсутствие зубцов Р.

2. Вместо них на электрокардиограмме зарегистрируются «волны трепетания» — равномерные, пилообразные (похожие на зубья пилы), с постепенным подъемом и резким спадом низкоамплитудные (не более 0,2mV) зубцы, обозначаемые строчной буквой «р».

Волны трепетания — это второй ЭКГ-признак трепетания предсердий. Лучше всего они просматриваются в отведении aVF.

3. Частота этих «волн трепетания» в пределах 250—370 в мин., и это является третьим ЭКГ-признаком трепетания предсердий.

4. Естественно, атриовентрикулярное соединение не в состоянии пропустить к желудочкам все 250 или 370 импульсов, исходящих из очага трепетания. Пропускается какая-то часть из них, например каждый пятый. Эту ситуацию называют функциональной блокадой атриовентрикулярного соединения. К примеру, если трепетание предсердий происходит с частотой 350 в мин, и есть функциональная атриовентрикулярная блокада 5:1, то частота возбуждения желудочков будет равна 70 в мин, их ритм будет равномерным, интервал R—R одинаковым.

Функциональная атриовентрикулярная блокада — это четвертый ЭКГ-признак трепетания предсердий.

5. Импульсы трепетания, прошедшие атриовентрикулярное соединение, попадут к желудочкам обычным путем, т.е. по проводящей системе желудочков. Следовательно, форма желудочкового комплекса QRS будет обычной, как и в норме, а ширина этого комплекса не превысит 0,12с.

Обычная форма желудочкового комплекса QRS — пятый ЭКГ-признак трепетания предсердий.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.3.2. ТРЕПЕТАНИЕ ЖЕЛУДОЧКОВ

Трепетание желудочков является экстремальной, критической ситуацией для пациента, требующей немедленного врачебного вмешательства. Нередко это состояние клинической смерти.

Электрокардиографически трепетание желудочков имеет несколько признаков. Рассмотрим их подробнее.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Волны трепетания с частотой около 200 в минуту представляют собой широкие, достаточно высокие (высота 2—4mV) монофазные кривые, в которых нельзя различить ни зубцов желудочкового комплекса QRS, ни сегмента S—Т, ни зубца Т. Важно подчеркнуть, что волны трепетания желудочков очень похожи между собой, имеют практически одинаковую амплитуду и форму.

2. Частота волн трепетания желудочков в пределах 150—300 в минуту, и чем больше частота возбуждения, тем мельче амплитуда волн.

3. Изоэлектрическая линия отсутствует, волны трепетания переходят одна в другую, образуя непрерывную волнообразную линию.

 

ИТОГИ РАЗДЕЛА 6.3

ЭКГ-признаки трепетания предсердий:

1. Отсутствие зубцов Р.

2. Появление волн трепетания, обозначаемых «р».

3. Частота волн трепетания 250—370 в мин.

4. Наличие функциональной а—в блокады.

5. Нормальные по форме и продолжительности QRS.

ЭКГ-признаки трепетания желудочков:

1. Отсутствие зубцов желудочкового комплекса QRS.

2. Появление широких монофазных волн трепетания желудочков одинаковой амплитуды и формы.

3. Частота волн трепетания 150—300 в мин.

4. Отсутствие изолинии.

 

ДОПОЛНИТЕЛЬНАЯ ИНФОРМАЦИЯ К РАЗДЕЛУ 6.3

1. ТРЕПЕТАНИЕ ПРЕДСЕРДИЙ, РЕГУЛЯРНАЯ И НЕРЕГУЛЯРНАЯ ФОРМЫ

В рассмотренном выше примере трепетания предсердий функциональная атриовентрикулярная блокада была постоянной (5:1) и не изменялась при регистрации ЭКГ. Четыре волны трепетания предсердий были заблокированы, и только пятая волна трепетания преодолевала атриовентрикулярное соединение, проходила к желудочкам и возбуждала их. В ответ формировался желудочковый комплекс QRS. Интервалы между ними были равны. Такую разновидность трепетания предсердий называют регулярной или правильной формой.

 

 

 

 

 

 

Однако в ряде случаев функциональная атриовентрикулярная блокада быстро меняется в процессе записи ЭКГ, становясь то 5:1, то 4:1, то 3:1, и т.д. При этой ситуации волны трепетания предсердий будут преодолевать атриовентрикулярное соединение аритмично и интервал между желудочковыми комплексами QRS будет различным. Это и есть нерегулярная, или неправильная форма трепетания предсердий.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.4. ФИБРИЛЛЯЦИЯ ПРЕДСЕРДИЙ И ЖЕЛУДОЧКОВ

Фибрилляция как разновидность нарушения ритма существенно отличается от пароксизмальной тахикардии и трепетания. Отличие заключается в том, что при фибрилляции имеется множество активных гетеротопных очагов возбуждения, которые расположены в различных участках миокарда, имеют различную электрическую силу по сравнению друг с другом и суммарная частота фибрилляции равна 450—600 возбуждений в минуту.

 

6.4.1. ФИБРИЛЛЯЦИЯ ПРЕДСЕРДИЙ

При этой разновидности нарушения ритма в различных участках миокарда предсердий появляется множество оча­гов возбуждения, генерирующих суммарно 450—600 импульсов в минуту. Следовательно, ежесекундно к атриовентрикулярному соединению подходят около 10 импульсов, разных по электрической силе. Естественно, пропустить все эти импульсы атриовентрикулярное соединение физиологически не в состоянии. Проходят лишь не попавшие в стадию функциональной атриовентрикулярной блокады, при этом интервалы прохождения различны и желудочки возбуждаются аритмично, но обычным путем, поэтому форма и продолжительность комплекса QRS обычны.

Ранее эту разновидность аритмии называли «мерцательной аритмией», однако грамотнее употреблять термин «фибрилляция предсердий с аритмической деятельностью желудочков».

Разберем ЭКГ-признаки фибрилляции предсердий:

1. Высокая частота фибрилляции 450—600 в мин не дает возможности проявиться синусовому ритму (частота 60—90 в мин), поэтому на ЭКГ отсутствует зубец Р.

2. Вместо зубца Р регистрируются волны фибрилляции, обозначаемые буквой «f», которые лучше всего визуализируются в отведении V1 и V2.

3. Частота волн фибрилляции 450—600 в мин.

4. Желудочковые комплексы QRS регистрируются аритмично, интервалы R—R различны.

5. Форма желудочкового комплекса QRS обычная, его ширина не превышает 0,12с.

6. Частота возбуждения желудочков обычно в пределах нормы (нормосистолический вариант).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.4.2. ФИБРИЛЛЯЦИЯ ЖЕЛУДОЧКОВ

Фибрилляция желудочков — это состояние клинической смерти пациента, которое требует немедленного проведения реанимационных мероприятий.

 

 

 

 

 

 

 

 

 

 

ЭКГ-признаки фибрилляции желудочков следующие:

1. Отсутствие на ЭКГ типичной кривой с дифференцированными привычными зубцами Р, Q, R, S и Т.

2. Вместо них регистрируются небольшие, различные по величине (0,1—0,3mV), неодинаковой формы волны фибрилляции.

3. Расстояния между пиками волн различны.

4. Нет четкой изолинии, кривая фибрилляции приобретает хаотическую причудливую форму.

 

ИТОГИ РАЗДЕЛА 6.4

ЭКГ-признаки фибрилляции предсердий:

1. Отсутствие зубца Р.

2. Регистрация «f» в отведении V1 и V2.

3. Частота «f» 450—600 в мин.

4. Интервалы R—R различны (аритмия).

5. Форма QRS обычная.

ЭКГ-признаки фибрилляции желудочков:

1. Отсутствие всех зубцов желудочкового комплекса.

2. Регистрация волн фибрилляции во всех отведениях.

3. Частота волн фибрилляции 450—600 в мин.

4. Отсутствие изоэлектрической линии.

 

ДОПОЛНИТЕЛЬНАЯ ИНФОРМАЦИЯ К РАЗДЕЛУ 6.4

1. РАЗНОВИДНОСТИ ФИБРИЛЛЯЦИЙ ПРЕДСЕРДИЙ

Фибрилляция предсердий бывает крупно- и мелковолновой в зависимости от амплитуды f-волн. Мелковолновая фибрилляция протекает с большей частотой (около 600 в мин.) и амплитудой волн не более 0,1mV. При крупноволновой фибрилляции частота импульсов составляет 450 в мин, а амплитуда волн около 0,2mV. Некоторые авторы выделяют и средневолновую фибрилляцию.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. ЧСС ПРИ ФИБРИЛЛЯЦИИ ПРЕДСЕРДИЙ

В зависимости от частоты возбуждения желудочков различают несколько вариантов фибрилляции предсердий:

 брадисистолический вариант ЧСС 50—60 в мин;

 нормосистолический вариант ЧСС 60—90 в мин;

 тахисистолический вариант ЧСС 90—140 в мин;

 пароксизм мерцания ЧСС более 140 в мин.

 

3. КЛИНИЧЕСКИЕ ВАРИАНТЫ ФИБРИЛЛЯЦИИ ПРЕДСЕРДИЙ

На сегодняшний день исследователи не пришли к единой точке зрения о классификации фибрилляции предсердий. Однако большинство из них предлагают выделять впервые выявленную и рецидивирующую фибрилляцию предсердий.

Фибрилляция предсердий может регистрироваться у пациента постоянно, и такой ее вариант называется перманентным.

Если она наблюдается у больных в течение короткого промежутка времени (минуты, часы, сутки), а затем самостоятельно восстанавливается синусовый ритм, то этот вариант называют пароксизмальным, если нет персистирующим. К персистирующему варианту относят также эпизоды фибрилляции предсердий, длящихся более 7 суток.

 

4. РАЗНОВИДНОСТИ ФИБРИЛЛЯЦИИ ЖЕЛУДОЧКОВ

В зависимости от высоты волн различают крупноволновую (0,2—0,3mV) и мелковолновую (0,1mV) формы фибрилляции желудочков. Мелковолновая форма прогностически менее благоприятна, так как не поддается купированию посредством дефибрилляции. Ее необходимо перевести в крупноволновую форму путем внутрисердечного введения адреналина и после этого провести дефибрилляцию.

 

 

 

 

 

 

 

 

 

 

 

ГЛАВА 7

ЭКГ ПРИ ИНФАРКТЕ МИОКАРДА

Одной из ключевых тем в электрокардиографии является диагностика инфаркта миокарда. Рассмотрим эту важнейшую тему в следующем порядке:

1. ЭКГ-признаки инфаркта миокарда.

2. Локализация инфаркта.

3. Стадии инфаркта.

4. Разновидности инфарктов миокарда.

 

7.1. ЭКГ-ПРИЗНАКИ ИНФАРКТА МИОКАРДА

На рисунке 92 схематически изображен миокард желудочков. Векторы возбуждения миокарда желудочков распространяются от эндокарда к эпикарду, т.е. они направлены на регистрирующие электроды и графически отобразятся на ЭКГ ленте как зубцы R (векторы межжелудочковой перегородки для упрощения понимания не рассматриваются).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

При возникновении инфаркта миокарда (рис. 93) часть мышечных волокон погибает и вектора возбуждения в зоне некроза не будет. Следовательно, регистрирующий электрод, расположенный над областью инфаркта, не запишет на ЭКГ ленте зубца R, но отобразит сохранившийся вектор противоположной стенки. Однако этот вектор направлен от регистрирующего электрода, и поэтому он отобразится на ЭКГ ленте зубцом Q.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Первый ЭКГ-признак — отсутствие зубца R в отведениях, расположенных над областью инфаркта.

Второй ЭКГ-признак — появление патологического зубца Q* в отведениях, расположенных над областью инфаркта.

Патологическим зубцом Q мы называем такой зубец Q, ширина которого превышает 0,03с. Вспомните генез нормального зубца Q — это возбуждение межжелудочковой перегородки, а время ее возбуждения не превышает 0,03с.

При инфаркте миокарда происходит гибель миокардиоцитов, внутриклеточные ионы калия выходят из погибшей клетки, накапливаются под эпикардом, образуя в зоне некроза «электрические токи повреждения», вектор которых направлен кнаружи. Эти токи повреждения существенно изменяют процессы реполяризации (S—Т и Т) в зоне некроза, что отображается на ЭКГ. Регистрирующие электроды, расположенные как над областью инфаркта, так и противоположной, записывают эти токи повреждения, но каждый по своему.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Электрод над зоной инфаркта отобразит токи повреждения подъемом сегмента S—Т выше изолинии, поскольку вектор этих токов направлен на него. Противоположный электрод эти же токи повреждения отобразит снижением сегмента S—Т ниже изолинии, так как токи направлены от него. Разнонаправленное движение сегментов S—Т противостоящих отведений, отображающих одни и те же токи повреждения, называется дискордантность.

Третий ЭКГ-признак — подъем сегмента S—Т выше изолинии в отведениях, расположенных над областью инфаркта.

Четвертый ЭКГ-признак — дискордантное смещение сегмента S—Т ниже изолинии в отведениях, противоположных области инфаркта.

Пятый ЭКГ-признак инфаркта миокарда — отрицательный зубец Т в отведениях, расположенных над областью инфаркта. Этот признак мы конкретно не оговаривали выше, однако упомянули, что ионы калия существенно изменяют процессы реполяризации. Следовательно, нормальный положительный зубец Т, отображающий процессы реполяризации, изменяется на отрицательный.

Подытожим рисунком 95 все признаки инфаркта миокарда.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ЭКГ-признаки инфаркта миокарда:

1) отсутствие зубца R в отведениях, расположенных над областью инфаркта;

2) появление патологического зубца Q в отведениях, расположенных над областью инфаркта;

3) подъем сегмента S—Т выше изолинии в отведениях, расположенных над областью инфаркта;

4) дискордантное смещение сегмента S—Т ниже изоли­нии в отведениях, противоположных области инфаркта;

5) отрицательный зубец Т в отведениях, расположенных над областью инфаркта.

 

7.2. ЛОКАЛИЗАЦИЯ ИНФАРКТА

Приведенные выше ЭКГ-признаки инфаркта миокарда позволяют уяснить принцип определения его локализации.

Действительно, инфаркт миокарда локализован в тех анатомических областях сердца, в отведениях от которых регистрируются 1, 2, 3 и 5 признаки; 4 признак играет роль вспомогательно-подтверждающего.

Например, если при анализе ЭКГ выявлены патологический зубец Q и подъем сегмента S—Т выше изолинии в отведениях I, aVL, V5 и V6, а также депрессия сегмента S—Т в отведениях III и aVF, то в данном случае имеет место инфаркт миокарда переднебоковой стенки левого желудочка.

Следует отметить, что в ряде случаев локализация инфаркта миокарда, определенная электрокардиографически, не всегда точно совпадает с реальным местоположением некроза сердечной мышцы. Это происходит потому, что в норме анатомическая ось сердца, направленная в грудной клетке сверху вниз, слева направо и сзади наперед, не всегда совпадает с таковой у больного человека. Поэтому анатомическое положение сердца в грудной полости у больного практически всегда отличается от положения у здорового человека. Вместе с тем определение топики инфаркта по электрокардиографическим отведениям основано именно на нормальном расположении сердца в грудной клетке.

 

7.3. СТАДИИ ИНФАРКТА МИОКАРДА

Крупноочаговые инфаркты миокарда имеют последовательную стадийность: острую стадию, подострую и стадию рубцевания. Длительность каждой стадии вариабельна, но приблизительную закономерность можно установить эмпирическим интервалом 1—3.

«1—3ч»—«1—3дн» длительность острой стадии инфаркта.

В эту стадию ионы калия, вышедшие за пределы погибших миокардиоцитов, формируют токи повреждения. Последние регистрируются на ЭКГ ленте подъемом сегмента S—Т в отведениях, расположенных над зоной инфаркта. Подъем сегмента S—Т маскирует зубец Т, которого в этой стадии практически не видно.

Монофазность сегмента S—Т и зубца Т — это и есть признак острой стадии инфаркта миокарда.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

«1—3дн»—«1—3нд» длительность подострой стадии.

Постепенно ионы калия, излившиеся в зону некроза, вымываются из нее, сила токов повреждения начинает ослабевать, и сегмент S—Т постепенно опускается к изолинии. Одновременно с этим процессом явно начинает контурироваться отрицательный зубец Т. По достижении сегментом S—Т изоэлектрической линии заканчивается подострая стадия и процесс переходит в стадию рубцевания.

Постепенное снижение сегмента S—Т к изолинии с отчетливой визуализацией отрицательного зубца Т — признак подострой стадии инфаркта миокарда.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

«1—3нд»-«3мс» длительность стадии рубцевания.

В этой стадии ионы калия уже давно покинули зону некроза, токов повреждения нет, на месте погибших миокардиоцитов формируется соединительная ткань, происходит консолидация рубца, его васкуляризация, нарастают новые кардиомиоциты.

Зубец Т постепенно подтягивается к изолинии, может стать положительным, может увеличиваться высота зубца R. Эти изменения более или менее заметны, но не они составляют основной признак стадии рубцевания. Маркером стадии рубцевания, а в последующем и стадии рубца, является патологический зубец Q.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Последовательность описанных изменений электрокардиограммы, свойственная стадийности инфарктного про­цесса, настолько закономерна, что можно смело назвать ее шестым признаком инфаркта миокарда.

 

7.4. РАЗНОВИДНОСТИ ИНФАРКТОВ МИОКАРДА

По своей сути инфаркты миокарда делятся на две большие группы: крупноочаговые и мелкоочаговые. Это деление ориентировано не только на объем некротизированной мышечной массы, но и на особенности кровоснабжения миокарда.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Питание мышцы сердца осуществляется по коронарным артериям, анатомически расположенным под эпикардом. По миокарду ток крови распространяется вглубь — от эпикарда к эндокарду. Поэтому при гибели миокардиоцитов в толще миокарда (интрамуральный инфаркт) или вблизи эндокарда (субэндокардиальный инфаркт) нарушение кровоснабжения происходит скорее всего на уровне концевых разветвлений коронарных артерий или даже на уровне микроциркуляции.

Иное дело гибель клеток миокарда вблизи эпикарда (субэпикардиальный или трансмуральный инфаркт), где только начинается кровоток в глубь миокарда. Вероятно, в этом случае речь идет о тромбозе крупной коронарной артерии.

Поэтому к крупноочаговым инфарктам миокарда относят трансмуральный и субэпикардиальный инфаркты. Интрамуральный и субэндокардиальный инфаркты принято считать мелкоочаговыми.

 

7.4.1. КРУПНООЧАГОВЫЕ ИНФАРКТЫ

На рисунке 100 видно, что регистрирующий электрод А, расположенный над областью трансмурального инфаркта, не запишет зубец R, поскольку вся толща миокарда погибла и вектора возбуждения здесь нет. Электрод А зарегистрирует только патологический зубец Q (отображение вектора противоположной стенки).

В случае субэпикардиального инфаркта погибает не вся толща миокарда, какая-то часть вектора возбуждения миокарда остается, и эта оставшаяся часть отобразится регистрирующим электродом Б на ЭКГ ленте небольшим зубцом R.

Следовательно, соизмеряя амплитуду зубцов R и Q в одном инфарктном комплексе QRS, можно определить глубину поражения мышцы сердца в зоне инфаркта. Это нетрудно будет сделать вам самостоятельно.

С другой стороны, на основании только что приведенных данных требует уточнения формулировка первого ЭКГ-признака инфаркта миокарда. Напомним его — исчезновение зубца R в отведениях, расположенных над областью инфаркта. Уточненная формулировка первого признака будет звучать как исчезновение зубца R или уменьшение его амплитуды в отведениях, расположенных над областью инфаркта.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7.4.2. МЕЛКООЧАГОВЫЙ СУБЭНДОКАРДИАЛЬНЫЙ ИНФАРКТ МИОКАРДА

При этом инфаркте величина вектора возбуждения миокарда не изменяется, поскольку он берет начало от проводящей системы желудочков, заложенной под эндокардом, и достигает неповрежденного эпикарда. Следовательно, первый и второй ЭКГ-признаки инфаркта отсутствуют.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ионы калия при некрозе кардиомиоцитов изливаются по&